Zowe Version 2.16 Documentation

Table of contents:

Zowe overview

Zowe overview

Zowe demo video

Component overview

Zowe Launcher

API Mediation Layer

e Key features

® API Mediation Layer structural architecture
e Components

e Onboarding APIs

Zowe Application Framework

Zowe CLI

e Zowe CLI capabilities

Zowe Explorer

Zowe Client Software Development Kits (SDKs)
Zowe Chat (Technical Preview)

e Zowe Chat key features

e Zowe Chat architecture

ZEBRA (Zowe Embedded Browser for RMF/SMF and APIs) - Incubator

Zowe IntelliJ Plug-in

Zowe Bill of Materials

Zowe architecture

Zowe architecture

Zowe architecture with high availability enablement on Sysplex

Zowe architecture when running in Kubernetes cluster

App Server
ZSS

ZIS

AP| Gateway
API Catalog
API Discovery

Caching service

Desktop Apps

File APl and JES API

Zowe Security Overview

Zowe Security Overview

Digital certificates

Digital certificates usage

User Authentication

Access Authorization

SAF resource check

Additional resources

Glossary of Zowe Security terminology

Glossary of Zowe Security terminology

Certificate concepts

e Keystore
e Truststore
e PKCS12
e 7/0OS Key Ring
e Server certificate
e (Client certificate
e Self-signed certificates
e (Certificate verification
e DISABLED verification
e NON-STRICT verification
e STRICT verification
e Zowe certificate requirements
e Extended key usage
e Hostname validity
e 7/OSMF access
e Certificate setup types
e File-based (PKCS12) certificate setup
e 7/0OS key ring-based certificate setup
Zowe Certificates overview
Zowe Certificates overview
e Digital certificates definition
e Digital certificates usage
e Public key infrastructure
e Transport Layer Security
¢ Digital certificates types
e (Certificates storage
e Keystore and Truststore
e Keystores
e Truststores
e SAF Keyring
Zowe User Authentication
Zowe User Authentication

e Authentication with JSON Web Tokens(JWT)

e Authentication with client certificates

e Authentication with Personal Access Token (PAT)

e Authentication with SAF Identity Tokens
e Multi-factor authentication (MFA)

e Certificate Authority Advanced Authentication Mainframe (CA AAM)

High Availability
High Availability
e Sysplex architecture and configuration
e Caching service setup and configuration
Glossary of Zowe terminology
Glossary of Zowe terminology
e (Core Zowe Projects
e Zowe AP| Mediation Layer (APl ML)
e API Catalog

API Discovery Service
AP| Gateway
Caching Service

e Zowe Application Framework
e Zowe CLI

e Zowe client projects

e Zowe Client SDKs

e Zowe Explorer

® Zowe server components

Zowe Systems Services Server (ZSS)

e Architecture and other components

Configuration Manager

Core component

Explorer

Extension

Imperative CLI Framework
Plug-in

Secure credential store

Service

Team configuration

Web Explorers

ZIS (Zowe Interprocess Services)
zLUX (V1 only)

Zowe App Server

Zowe Chat

Zowe Component

Zowe Desktop

Zowe Embedded Browser for RMF/SMF and APIs (ZEBRA)
Zowe install packaging

Zowe Intelli) Plug-in

Zowe Launcher

e Community

Open Mainframe Project (OMP)
Squad

Technical Steering Committee (TSC)
Zowe Conformance Program

¢ |Installation and configuration

Base profile

Convenience build

Extension directory
Instance.env (V1 only)

Log directory

OMVS

Runtime directory

Service profile

SMP/E

SMP/E with z/OSMF workflow

e Started task (STC)
e Workspace directory
e Zowe configuration file
e Zowe instance directory (V1 only)
e Zowe runtime
e Sample library
e ZWEADMIN
e ZWESIUSR
e ZWESVUSR
® Plug-ins and extensions
e API Mediation Layer
e API Catalog
e Zowe Application Framework
e 3270 Terminal
e File Tree
e |P Explorer
e JES Explorer
e MVS (Multiple Virtual Storage) Explorer
e USS Explorer
e Virtual (VT) Terminal
e Zowe Editor
e Zowe CLI Extensions
e |BM® CICS® Plug-in for Zowe CLI
e [BM® Db2® Plug-in for Zowe CLI
e Use and development
e API Mediation Layer
® Micronaut Enabler
® Node,js Enabler
e Plain Java Enabler (PJE)
e Sprint Boot Enablers
e Zowe Application Framework
e Accessing the Desktop
* App2App
e Config Service
e Zowe FAQ
e Zowe FAQ
e Zowe FAQ
e What is Zowe?
e Who is the target audience for using Zowe?
e What language is Zowe written in?
e What is the licensing for Zowe?
e Why is Zowe licensed using EPL2.0?
® What are some examples of how Zowe technology might be used by z/OS products and applications?
e What is the best way to get started with Zowe?
e What are the prerequisites for Zowe?
e What's the difference between using Zowe with or without Docker?

e |s the Zowe CLI packaged within the Zowe Docker download?

Does ZOWE support z/OS ZIIP processors?

How is access security managed on z/OS?

How is access to the Zowe open source managed?

How do | get involved in the open source development?
Where can | submit an idea for a future enhancement to Zowe?
When will Zowe be completed?

Can | try Zowe without a z/OS instance?

Zowe CLI FAQ

Why might | use Zowe CLI versus a traditional ISPF interface to perform mainframe tasks?
With what tools is Zowe CLI compatible?

Where can | use the CLI?

Which method should | use to install Zowe CLI?

How can | get Zowe CLI to run faster?

How can | manage profiles for my projects and teams?

Does Zowe CLI support multi-factor authentication (MFA)?

How can | get help with using Zowe CLI?

How can | use Zowe CLI to automate mainframe actions?

How can | contribute to Zowe CLI?

Zowe Explorer FAQ

Why might | use Zowe Explorer versus a traditional ISPF interface to perform mainframe tasks?
How can | get started with Zowe Explorer?

Where can | use Zowe Explorer?

How do | get help with using Zowe Explorer?

How can | use Secure Credential Storage for Zowe Explorer?

What if Secure Credential Storage does not work in my environment?

What if | do not want Zowe Explorer to store my credentials?

What types of profiles can | create for Zowe Explorer?

Does Zowe Explorer support multi-factor authentication (MFA)?

Is it possible to change the detected language of a file or data set opened in Zowe Explorer?
How can | use FTP as my back-end service for Zowe Explorer?

How can | contribute to Zowe Explorer?

Zowe IntelliJ plug-in FAQ

Why might | use Zowe IntelliJ plug-in versus a traditional ISPF interface to perform mainframe tasks?
How can | get started with Zowe IntelliJ plug-in?

Where can | use Zowe IntelliJ plug-in?

How do | get help with using Zowe IntelliJ plug-in?

How can | create, edit and delete zZOSMF connection?

How can | contribute to Zowe IntelliJ plug-in?

Zowe V2 FAQ
Zowe V2 FAQ

Where can | find the V1 and V2 LTS conformance criteria?

Whats the difference between "server.json" and "example-zowe.yam|"?

What are the new default ports?

How do | access Zowe through the API Mediation Layer in V2?

What new frameworks are supported in V2?

Why aren't the explorers appearing on my desktop anymore?

Zowe V2 office hours videos

Zowe V2 office hours videos
e Office hours for Zowe extenders
e General information
e Zowe component updates
e |Installation and V2 conformance
e Office hours for Zowe consumers
e Zowe component updates
Zowe CLI quick start
Zowe CLI quick start
e |Installing
e Software Requirements
¢ Installing Zowe CLI core from public npm
e |nstalling CLI plug-ins
e Issuing your first commands
e Listing all data sets under a high-level qualifier (HLQ)
¢ Downloading a partitioned data-set (PDS) member to local file
e Team profiles
e Using profiles
e Profile types
e (Creating zosmf profiles
e Using zosmf profiles
e Writing scripts
e Example:
e Next steps
Migrating Zowe server component from V1 to V2
Migrating Zowe server component from V1 to V2
e Component manifest
e Lifecycle scripts
e Environment variables
e Packaging one component deliverable for both Zowe v1 and v2
Zowe learning resources
Zowe learning resources
® Blogs
¢ Videos
e Webinars
e Community
e Training
Installing Zowe
Installing Zowe
Zowe server-side installation overview
Zowe server-side installation overview
e Zowe runtime
e The Zowe Cross Memory Server (ZIS)
e Roles and responsibilities for server-side component installation
e Security administrator
e Storage administrator

o Network administrator

e System programmer
e End-to-end installation
e Stage 1: Prepare for installation
e Stage 2: Installing the Zowe z/OS runtime
e Stage 3: Configuring the Zowe z/OS runtime
e Stage 4: (Optional) Customizing the configuration
e Stage 5: (Optional) Installing and managing extensions
e How to troubleshoot problems with the installation
® Next step
® Preparing for installation
® Preparing for installation
e Key concepts in Zowe server-side installation
e 7/0OS UNIX System Services (USS)
e Runtime directory
e Topology of the Zowe z/OS launch process
e Runtime directory
® zwe command
e Zowe started tasks
e 7/OS Data sets used by Zowe
e Zowe configuration file (zowe.yaml)
e Workspace directory
e Log directory
e Keystore directory
e Extension directory
e Next step
e Zowe z/OS components installation checklist
e Zowe z/OS components installation checklist
® Preparing for installation
¢ |Installing the Zowe z/OS runtime
e Configuring Zowe z/OS Components
e Configuring security
e Configuring certificates
e Configuring the Zowe cross memory server (ZIS)
e Configuring High Availability (optional)
e Starting and Stopping Zowe
e Verifying Zowe installation on z/OS
e Addressing z/OS requirements
e Addressing z/OS requirements
e 7/0OS system requirements
e 7/0OS
e Mainframe Resources Consumption
e Resource consumption during Zowe startup
® Resource consumption when Zowe is idling
* Nodejs
® Java
e 7/OSMF (Optional)

e Addressing Node.js requirements

Addressing Node.js requirements
e Supported Node,js versions
¢ How to obtain IBM SDK for Node,js - z/OS
e Hardware and software prerequisites
¢ |Installing the PAX edition of Nodejs - z/OS
¢ Installing the SMP/E edition of Node,js - z/OS
Addressing security requirements
Addressing security requirements
e Tasks performed by your security administrator

e Assign security permissions to users
(Recommended) Addressing authentication requirements
(Recommended) Addressing authentication requirements
e Multi-Factor Authentication (MFA)
e Single Sign On (SSO)
¢ APl Mediation Layer OIDC Authentication
Addressing UNIX System Services (USS) Requirements
Addressing UNIX System Services (USS) Requirements
e What is USS?
e Setting up USS for the first time
e language environment
e OMVS segment
e Address space region size
e Temporary files management

e How to customize temporary files

e Customizing temporary files in STC
e Customizing temporary files in zowe.yaml|

Addressing storage requirements
Addressing storage requirements
¢ Installing with SMP/E
¢ |Installing Zowe runtime from a convenience build

e Memory requirements for API Mediation Layer
Addressing network requirements
Addressing network requirements
Addressing browser requirements
Addressing browser requirements
e Zowe Desktop requirements (client PC)
e Browser limitations in API Catalog
Installing Zowe SMP/E overview
Installing Zowe SMP/E overview

e End-to-end installation diagram

e Zowe FMIDs
® Program materials

e Basic machine-readable material

® Program source materials

e Publications useful during installation
® Program support

e Statement of support procedures

® Program and service level information

Program level information

Service level information

¢ Installation requirements and considerations

Driving system requirements

¢ Driving system machine requirements

¢ Driving system programming requirements
Target system requirements

e Target system machine requirements

e Target system programming requirements
e DASD storage requirements

FMIDs deleted

e |Installing Zowe via SMP/E instructions

¢ |Installing Zowe via SMP/E instructions

SMP/E considerations for installing Zowe

SMP/E options subentry values

Overview of the installation steps

Download and unzip the Zowe SMP/E package
Allocate the file system to hold the download package
Upload the download package to the host

Extract and expand the compressed SMPMCS and RELFILEs
e GIMUNZIP

Customize sample installation jobs

e ZWE2RCVE

e ZWETSMPE and ZWE4ZFS

e ZWEMKDIR, ZWE1SMPE, ZWE2RCVE, ZWE3ALOC, ZWE4ZFS and ZWE5MKD
Create SMP/E environment (Optional)

Perform SMP/E RECEIVE

Allocate SMP/E target and distributions libraries
Allocate, create and mount ZSF files (Optional)
Allocate z/OS UNIX paths

Create DDDEF entries

Perform SMP/E APPLY

e Sample APPLY commands

Perform SMP/E ACCEPT

Run REPORT CROSSZONE

Cleaning up obsolete data sets, paths, and DDDEFs

e Activating Zowe

File system execution

e Zowe customization
e |Installing Zowe via z/OSMF from PSWI and SMP/E workflow
e |Installing Zowe via z/OSMF from PSWI and SMP/E workflow

e 7/0S requirements for z/ZOSMF configuration

e Addressing z/OSMF requirements

e Addressing z/OSMF requirements
e Configure z/OSMF
e Configure z/OSMF security

e Confirm that the installer has read, create, update, and execute privileges in z/OS
e Address USS requirements
e Configure SMP/E Internet Service Retrieval
Configuring z/OSMF
Configuring z/OSMF
e 7z/OSMF REST services for the Zowe CLI
e Configuring z/OSMF to properly work with APl ML
Configuring z/OSMF Lite (for non-production use)
Configuring z/OSMF Lite (for non-production use)
¢ Introduction
e Assumptions
e Software Requirements
e Minimum Java level
e WebSphere® Liberty profile (zZOSMF V2R3 and later)
e System settings
* Web browser
e (Creating a z/OSMF nucleus on your system
e Running job IZUNUSEC to create security
e Before you begin
e Procedure
e Results
e Common errors
e Running job IZUMKEFS to create the z/OSMF user file system
e Before you begin
® Procedure
® Results
e Common errors
e Copying the IBM procedures into JES PROCLIB
e Before you begin
e Procedure
® Results
e Common errors
e Starting the z/OSMF server
e Before you begin
® Procedure
® Results
e Accessing the z/ZOSMF Welcome page
e Before you begin
e Procedure
e Results
e Common errors
e Mounting the z/OSMF user file system at IPL time
e Before you begin
® Procedure
® Results
e Adding the required REST services
e Enabling the zZOSMF JOB REST services

e Procedure
e Results
e Common errors
® Enabling the TSO REST services
e Before you begin
® Procedure
e |ZUTSSEC
® Results
e Enabling the zZOSMF data set and file REST services
e Before you begin
e Procedure
e Results
e Common errors
e Enabling the z/OSMF Workflow REST services and Workflows task Ul
e Before you begin
® Procedure
® Results
e Troubleshooting problems
e Common problems and scenarios
e System setup requirements not met
e Tools and techniques for troubleshooting
e Common messages
e Appendix A. Creating an IZUPRMxx parmlib member
¢ Appendix B. Modifying IZUSVR1 settings
e Appendix C. Adding more users to z/OSMF
e Before you Begin
e Procedure
e Results
Installing Zowe from a Portable Software Instance
Installing Zowe from a Portable Software Instance
e End-to-end installation diagram
® Prerequisites
® Procedure
Acquiring a z/OSMF Portable Software Instance
Acquiring a z/OSMF Portable Software Instance
¢ Download the Portable Software Instance from Zowe Downloads
e Register Portable Software Instance in z/OSMF
Installing Product Software Using z/OSMF Deployments
Installing Product Software Using z/OSMF Deployments
¢ Installing process
Installing Zowe SMP/E build with z/ZOSMF workflow
Installing Zowe SMP/E build with z/OSMF workflow
e Activating Zowe
e File system execution
e Zowe customization
Installing Zowe via a convenience build (PAX file)

Installing Zowe via a convenience build (PAX file)

¢ Introduction
e End-to-end installation diagram
e Step 1: Obtain the convenience build
e Step 2: Transfer the convenience build to USS and expand it
e Step 3: (Optional) Add the zwe command to your PATH
e Step 4: Copy the zowe.yaml configuration file to preferred location
e Step 5: Install the MVS data sets
e About the MVS data sets
® Procedure
e Next steps
Installing Zowe via a containerization build (PAX file)
Installing Zowe via a containerization build (PAX file)
e End-to-end container installation
e Stage 1: Plan and prepare for the installation
e Stage 2: Download Zowe containers
e Stage 3 & 4: Install and configure Zowe containers
e Stage 5: Start Zowe containers
e (Optional) Stage 6: Monitor Zowe containers
e Known limitations
Preparing for Zowe server containers installation
Preparing for Zowe server containers installation
e Kubernetes cluster
e kubectl tool
Downloading and installing Zowe containers
Downloading and installing Zowe containers
e Downloading
e Downloading configuration samples
¢ Downloading container images
¢ Installing
e Upgrading
Configuring Zowe containers
Configuring Zowe containers
e 1. Create namespace and service account
e \Verification
e 2. Create Persistent Volume Claim (PVC)
Verification

e 3. Create and modify ConfigMaps and Secrets

Verification
® 4 Expose APl Mediation Layer components
e 4a. Create service
e Defining api-catalog service
* Applying Gateway Service
® Applying Discovery service
e 4b. Create Ingress (Bare-metal)
e 4c. Create Route (OpenShift)
e Customizing or manually creating ConfigMaps and Secrets
e PodDisruptionBudget

e HorizontalPodAutoscaler
e Kubernetes v1.21+
Starting, stopping, and monitoring Zowe containers
Starting, stopping, and monitoring Zowe containers
e Starting Zowe containers
e Port forwarding (for minikube only)
e Verifying Zowe containers
® Monitoring Zowe containers
® Monitoring Zowe containers via Ul
® Monitoring Zowe containers via CLI
e Stopping, pausing or removing Zowe containers
Configuring Overview
Configuring Overview
¢ Configuring Zowe runtime
e Configuring the z/OS system for Zowe
® Assigning security permissions
e Configuring the Zowe cross memory server (ZWESISTC)
Initializing Zowe z/OS runtime
Initializing Zowe z/OS runtime
e |Initialize Zowe maunually using zwe init command group
e Configure Zowe with zZOSMF workflows
Configuring Zowe with zwe init
Configuring Zowe with zwe init
® About the zwe init command
® zwe init arguments
e Zowe initilization command
® Next step
zwe init subcommand overview
zwe init subcommand overview
¢ |Initializing Zowe custom data sets (zwe init mvs)
® Procedure to initialize Zowe custom data sets
e Initializing Zowe security configurations (zwe init security)
e Performing APF authorization of load libraries (zwe init apfauth)
e Configuring Zowe to use TLS certificates (zwe init certificate)
e (Creating VSAM caching service datasets (zwe init vsam)
¢ Installing Zowe main started tasks (zwe init stc)
e Next steps
Configuring Zowe with z/OSMF Workflows
Configuring Zowe with z/OSMF Workflows
e Configure the Zowe instance directory
e Execute the configuration workflow
e Execute workflow from PSWI
e Execute workflow from software instance
e Register and execute workflow in the z/OSMF web interface
® Next step
Configuring security
Configuring security

Validate and re-run zwe init commands

Initialize Zowe security configurations

Perform APF authorization of load libraries

Configure the z/OS system for Zowe

Assign security permissions to users

Zowe Feature specific configuration tasks

Next step

Initializing Zowe security configurations

Initializing Zowe security configurations

Configuring with zwe init security command

Using security-dry-run

Configuring with ZWESECUR JCL

Undo security configurations

e Next step
e Performing APF authorization of load libraries
e Performing APF authorization of load libraries
e Making APF auth be part of the IPL
e Addressing z/OS requirements for Zowe
e Addressing z/OS requirements for Zowe
e 7/0OS prerequisites
e Settings specific configuration requirements
e Configure an ICSF cryptographic services environment
e Configure security environment switching
e Configure address space job naming
e Configure multi-user address space (for TSS only)
e Configure user IDs and groups for the Zowe started tasks
e Configure ZWESLSTC to run Zowe high availability instances under ZWESVUSR user ID
e Configure the cross memory server for SAF

e Configure main Zowe server to use client certificate identity mapping

e Using RACF
e Using ACF2
e Using TSS
e Configure main Zowe server to use distributed identity mapping
e Using RACF
e Using ACF2
e Using TSS

e Configure signed SAF Identity tokens (IDT)
e Configure the main Zowe server to issue SMF records
e Multi-Factor Authentication (MFA)
e Single Sign-On (SSO)
¢ APl Mediation Layer OIDC Authentication
® Assigning security permissions to users
e Assigning security permissions to users
e Overview of user categories and roles
e Security Permissions Reference Table
e Granting users permission to access z/OSMF

e Next step

e Configuring certificates
e Configuring certificates
e Certificate concepts
e Keystore
e Truststore
e PKCS12
e 7/0OS key ring
e Server certificate
e C(Client certificate
e Self-signed certificates
e Certificate verification
e DISABLED verification
e NON-STRICT verification
e STRICT verification
e Zowe certificate requirements
e Extended key usage
e Hostname validity
e 7/OSMF access
e Certificate setup type
e File-based (PKCS12) certificate setup
e 7/0OS key ring-based certificate setup
e Next steps: Creating or importing certificates to Zowe
e Zowe certificates configuration questionnaire
e Zowe certificates configuration questionnaire
e Certificate configuration questionnaire
e Next steps
e Certificate configuration scenarios
e Certificate configuration scenarios
e *What is a valid certificate in Zowe?
e Considerations for certificate scenario selection
e Scenario 1: Use a file-based (PKCS12) keystore with Zowe generated certificates
e Scenario 2: Use a file-based (PKCS12) keystore and import a certificate generated by another CA
e Scenario 3: Use a z/OS keyring-based keystore with Zowe generated certificates
e Scenario 4: Use a z/OS keyring-based keystore and connect to an existing certificate
e Scenario 5: Use a z/OS keyring-based keystore and import a certificate stored in a data set
® Importing and configuring a certificate
¢ Importing and configuring a certificate
e Importing an existing PKCS12 certificate
¢ Importing a certificate Authority (CA)
e Manually importing a certificate authority into a web browser
e Importing a local CA certificate on Linux
e Importing an existing JCERACFKS certificate
® Importing a certificate stored in an MVS data set into a Zowe key ring
e Next steps
® Generating a certificate
e Generating a certificate
e (Creating a PKCS12 keystore

e Configure the PKCS12 setup section in zowe.yaml
e Run the command to generate a PKCS12 keystore
e Next steps after PKCS12 setup
e Creating a JCERACFKS certificate
e Configure the JCERACFKS setup section in zowe.yaml
e Run the command to generate a JCERACFKS certificate
e Next steps after JCERACFKS setup
Using certificates
Using certificates
e Use PKCS12 certificates
e Use JCERACFKS certificates
e Use multiple certificate authorities
Setting up Zowe certificates using workflows
Setting up Zowe certificates using workflows
Configuring the Zowe cross memory server (ZIS)
Configuring the Zowe cross memory server (ZIS)
e PDS sample library and PDSE load library
¢ Load module
e APF authorize
e Configuring using zwe init apfauth
e Key 4 non-swappable
e PARMLIB
e PROCLIB
e SAF configuration
e Zowe auxiliary service
¢ |Installing the auxiliary service
e Zowe Auxiliary Address space
e Summary of cross memory server installation
e Starting and stopping the cross memory server on z/OS
® Troubleshooting
e Next step
Configuring high availability (optional)
Configuring high availability (optional)
e Enable high availability when Zowe runs in Sysplex
e Known limitations
e Enable high availability when Zowe runs in Kubernetes
Configuring Sysplex for high availability
Configuring Sysplex for high availability
e Sysplex environment requirements
e Configuring Sysplex Distributor
Configuring z/OSMF for high availability in Sysplex
Configuring z/OSMF for high availability in Sysplex
e Sysplex environment requirements
e Setting up z/OSMF nucleus
e Requirements of zZOSMF HA parmlib member in Sysplex
e Configuring z/OSMF for high availability
Configuring the Caching Service for high availability

Configuring the Caching Service for high availability
® inMemory
¢ Infinispan
e VSAM
e redis
Starting and stopping Zowe
Starting and stopping Zowe
e Starting and stopping the cross memory server ZWESISTC on z/OS
e Starting and stopping the cross memory auxiliary server ZWESASTC on z/OS
e Starting and stopping Zowe main server ZWESLSTC on z/OS with zwe server command
e Starting and stopping Zowe main server ZWESLSTC on z/OS manually
e Stopping and starting a Zowe component without restarting Zowe main server
Verifying Zowe installation on z/OS
Verifying Zowe installation on z/OS
e Verifying Zowe Application Framework installation
e \Verifying APl Mediation installation
e Verifying z/OS Services installation
Configuring Zowe Application Framework
Configuring Zowe Application Framework
e Accessing the App Server
® Accessing the Desktop
® Accessing ZSS
e Configuration file
® app-server configuration
e zss configuration
e Environment variables
e Configuring the framework as a Mediation Layer client
e Setting up terminal app plugins
e Setting up the TN3270 mainframe terminal app plugin
e Setting up the VT Terminal app plugin
¢ Network configuration
e HTTPS
e HTTP
e Configuration Directories
e Old defaults
e App plugin configuration
¢ Logging configuration
e Enabling tracing
® Logfiles
® Retaining logs
e Controlling the logging location
e 7SS configuration
e 7SS 64 or 31 bit modes
e Verifying which ZSS mode is in use
e Verifying which ZSS mode plugins support
e Setting ZSS 64 bit or 31 bit mode

e Customizing ZSS session duration

Using AT-TLS in the App Framework
e (Creating AT-TLS certificates and keyring using RACF
e Defining the AT-TLS rule

e Using multiple ZIS instances

Controlling access to apps

e Enabling RBAC

e Controlling app access for all users

e Controlling app access for individual users

Controlling access to dataservices

e Defining the RACF ZOWE class

e (Creating authorization profiles

e Creating generic authorization profiles
e Configuring basic authorization

e Endpoint URL length limitations

Multi-factor authentication configuration
e Session duration and expiration
e Configuration

Administering the servers and plugins using an API
e Managing Cluster Mode for app-server
e To turn the cluster mode on
e To turn the cluster mode off
Using the Configuration Manager
Using the Configuration Manager
e Using zwe with Configuration Manager
e Validation error reporting
e Example
JSON-Schema validation

Splitting configuration into multiple storage types

Parmlib support
e Configuration templates
e Configuration Manager Unix executable
Zowe server component and extension management
Zowe server component and extension management
¢ Installing a component
e Enable and disable component
e Upgrading a component
¢ Uninstalling a component
e Searching for a component
e Manual Component management
e Zowe core components
e Zowe z/OS extensions
Advanced APl Mediation Layer Configuration
Advanced API Mediation Layer Configuration
Enabling single sign on for clients
Enabling single sign on for clients
Enabling single sign on for clients via client certificate configuration

Enabling single sign on for clients via client certificate configuration

Enabling single sign on for clients via personal access token configuration
Enabling single sign on for clients via personal access token configuration
Enabling single sign on for clients via JWT token configuration
Enabling single sign on for clients via JWT token configuration
e Using SAF as an authentication provider
¢ Enabling a JWT token refresh endpoint
e Authorization
e Additional customizable properties when using JWT tokens
Enabling single sign on for extending services
Enabling single sign on for extending services
Enabling single sign on for extending services via JWT token configuration
Enabling single sign on for extending services via JWT token configuration
e Adding a custom HTTP Auth header to store Zowe JWT token
Enabling single sign on for extending services via PassTicket configuration
Enabling single sign on for extending services via PassTicket configuration
e Configuring Zowe to use PassTickets
e Overview of how PassTickets are used
e Enabling PassTicket support
e Security configuration that allows the Zowe API Gateway to generate PassTickets for an API service
e ACF2
e Top Secret
e RACF
Adding custom HTTP Auth headers to store user ID and PassTicket
Customizing routing behavior
Customizing routing behavior
Configuring routing in a multi-tenant environment
Configuring routing in a multi-tenant environment
Customizing Cross-Origin Resource Sharing (CORS)
Customizing Cross-Origin Resource Sharing (CORS)
Using encoded slashes
Using encoded slashes
Customizing Gateway retry policy
Customizing Gateway retry policy
Configuring a unique cookie name for a specific APl ML instance
Configuring a unique cookie name for a specific API ML instance
Retrieving a specific service within your environment
Retrieving a specific service within your environment
e OQutput a routed instance header
Distributing the load balancer cache
Distributing the load balancer cache
Setting a consistent service ID
Setting a consistent service ID
Customizing management of API ML load limits
Customizing management of API ML load limits
Customizing connection limits
Customizing connection limits
e TCP/IP Connection Limits

e Websocket Limits
Customizing Gateway timeouts
Customizing Gateway timeouts
Customizing Java Heap sizes
Customizing Java Heap sizes
e Recommendation
Configuring authorization for API ML
Configuring authorization for API ML
Limiting access to information or services in the API Catalog
Limiting access to information or services in the API Catalog
¢ Hide service information
Configuring SAF resource checking
Configuring SAF resource checking
e SAF Resource Checking Providers
e REST endpoint call
* Native
e Dummy implementation
Configuring an authentication provider for APl Mediation Layer
Configuring an authentication provider for APl Mediation Layer
e 7z/OSMF Authentication Provider
e SAF Authentication Provider
Using Infinispan as a storage solution through the Caching service
Using Infinispan as a storage solution through the Caching service
e Understanding Infinispan
® Infinispan replica instances
¢ Infinispan configuration
Using VSAM as a storage solution through the Caching service
Using VSAM as a storage solution through the Caching service
e Understanding VSAM
e VSAM configuration
e VSAM performance
Using Redis as a storage solution through the Caching service
Using Redis as a storage solution through the Caching service
e Understanding Redis
e Redis replica instances
e Redis Sentinel
e Redis SSL/TLS
e Redis and Lettuce
e Redis configuration
Customizing the API Catalog Ul
Customizing the API Catalog Ul
e API Catalog branding
e Replace or remove the Catalog with another service
Configuring AT-TLS for APl Mediation Layer
Configuring AT-TLS for APl Mediation Layer
e AT-TLS configuration for Zowe
e AT-TLS rules

e [nbound rules
e Qutbound rules
e For z/OSMF

e For communication between APl Gateway and other core services

e For communication between API Gateway and southbound services

e Ciphers
Using AT-TLS for APl ML in High Availability
AT-TLS Troubleshooting

® The message This combination of port requires SSL is thrown

e AT-TLS rules are not applied
¢ Non matching ciphers

Zowe CLI
Zowe CLI

Fundamentals

Quick start

Installing

Configuring and updating
Using Zowe CLI and plug-ins
Developing a Zowe CLI plug-in
Contributing to Zowe CLI
Troubleshooting and support

Community resources

Zowe CLI System requirements

Zowe CLI System requirements

Client-side requirements

* Nodejs

® npm

e Secure Credential Store

e Plug-in client requirements
Host-side requirements

e |BM z/OSMF

® Plug-in services

e Zowe CLI on z/OS is not supported
Free disk space

Zowe CLI Installation checklist

Zowe CLI Installation checklist

Addressing the prerequisites
Installing Zowe CLI
Configuring Zowe CLI

Installing Zowe CLI

Installing Zowe CLI

Installation guidelines

¢ |Installation notes
Prerequisites

® Prerequisite notes
Install Zowe CLI from npm

Install Zowe CLI from a local package

Configuring Secure Credential Store on headless Linux operating systems
Configuring Secure Credential Store on headless Linux operating systems
e Headless Linux requirements
¢ Unlocking the keyring manually
¢ Unlocking the keyring automatically
e Configuring z/Linux
Configure Zowe CLI on operating systems where the Secure Credential Store is not available
Configure Zowe CLI on operating systems where the Secure Credential Store is not available
e V1 profiles
e Team configuration
Installing Zowe CLI with Node.js 16 on Windows
Installing Zowe CLI with Node.js 16 on Windows
e Additional Considerations
Install CLI from Online Registry Via Proxy
Install CLI from Online Registry Via Proxy
Updating Zowe CLI
Updating Zowe CLI
e Updating to the Zowe CLI V2 Long-term Support (v2-Its) version
¢ |dentify the currently installed version of Zowe CLI
e |dentify the currently installed versions of Zowe CLI plug-ins
e Update Zowe CLI from the online registry
e Update or revert Zowe CLI to a specific version
e Update Zowe CLI from a local package
Uninstalling Zowe CLI
Uninstalling Zowe CLI
Configuring Zowe CLI environment variables
Configuring Zowe CLI environment variables
e Setting the CLI home directory
e Setting a shared plug-in directory
e Setting CLI log levels
e Setting CLI daemon mode properties
e Setting other environment variables
Configuring an environment variables file
Configuring an environment variables file
e How .zowe.env.json works
e C(reating the configuration file
e Using daemon mode
Zowe Explorer
Zowe Explorer
e Fundamentals
¢ |Installing and configuring
e Using Zowe Explorer
e Extending Zowe Explorer
e Contributing to Zowe Explorer
e Troubleshooting and support
e Community resources

Zowe Explorer System Requirements

Zowe Explorer System Requirements
e (lient side requirements
e QOperating systems
¢ Integrated development environments:
e Server side requirements
Visual Studio Code (VS Code) Extension for Zowe
Visual Studio Code (VS Code) Extension for Zowe
e Software Requirements
¢ Profile notes:
¢ |Installing Zowe Explorer
e Configuring Zowe Explorer
¢ Modifying creation settings for data sets, USS files, and jobs
¢ Modifying temporary file location settings
® Modifying the Secure Credentials Enabled setting
e Setting confirmation requirements for submitting jobs
e Relevant Information
Zowe Explorer profiles
Zowe Explorer profiles
e Configuring Zowe V2 profiles
e (Creating team configuration files
® Managing profiles
e Sample profile configuration
e Working with Zowe V1 profiles
e Managing Zowe V1 profiles
e \Validating profiles
e Using base profiles and tokens with existing profiles
e Accessing services through APl ML using SSO
e Logging in to the Authentication Service
Zowe Chat (Technical Preview)
Zowe Chat (Technical Preview)
e Deployment diagram
System requirements
System requirements
® Linux system requirements
¢ Nodejs
e Zowe CLI (Optional)
e 7/0OS system requirements
e 7z/OSMF
¢ Network requirements
e Ports
e Connectivity Requirements
e Chat Tool Requirements
Configuring chat platforms
Configuring chat platforms
¢ Mattermost
¢ Microsoft Teams
e Slack

Configuring Mattermost

Configuring Mattermost

Installing Mattermost chat platform server

Installing Mattermost chat platform server

e |nstalling

e Next steps

Creating administrator account and Mattermost team
Creating administrator account and Mattermost team
Creating the bot account

Creating the bot account

e Next steps

Inviting the created bot to your Mattermost team

Inviting the created bot to your Mattermost team

e Next steps

Inviting the created bot to your Mattermost channel

Inviting the created bot to your Mattermost channel
Enabling insecure outgoing connections for mouse navigation
Enabling insecure outgoing connections for mouse navigation
Configuring Microsoft Teams

Configuring Microsoft Teams

Creating Microsoft Teams bot app with Developer Portal
Creating Microsoft Teams bot app with Developer Portal
Creating a bot for Microsoft Teams bot app

Creating a bot for Microsoft Teams bot app

Creating a bot with Microsoft Bot Framework

Creating a bot with Microsoft Bot Framework

Creating a bot with Microsoft Azure

Creating a bot with Microsoft Azure

Configuring messaging endpoint for Microsoft Teams
Configuring messaging endpoint for Microsoft Teams
Configuring messaging endpoint for the Microsoft Bot Framework bot
Configuring messaging endpoint for the Microsoft Bot Framework bot
Configuring messaging endpoint for the Microsoft Azure bot
Configuring messaging endpoint for the Microsoft Azure bot
Configuring Slack

Configuring Slack

Creating a new Slack App

Creating a new Slack App

Configuring the Slack App

Configuring the Slack App

Connecting to Slack using Socket mode

Connecting to Slack using Socket mode

Connecting to Slack using public HTTP endpoint

Connecting to Slack using public HTTP endpoint

Installing the Slack App

Installing the Slack App

Adding your bot user to your Slack channel

Adding your bot user to your Slack channel
e Mention your bot user directly
e Use the channel link
Installing Zowe Chat
Installing Zowe Chat
® Prerequisites
¢ |Installing
Configuring Zowe Chat
Configuring Zowe Chat
e Zowe Chat server configuration
e Zowe Chat z/OSMF endpoint configuration
e Chat tool configuration
Configuring Zowe Chat with Mattermost
Configuring Zowe Chat with Mattermost
® Prerequisite
e Configuring Mattermost
Configuring Zowe Chat with Microsoft Teams
Configuring Zowe Chat with Microsoft Teams
® Prerequisite
e Configuring Microsoft Teams
Configuring Zowe Chat with Slack
Configuring Zowe Chat with Slack
® Prerequisite
e Configuring Slack
Starting and stopping Zowe Chat
Starting and stopping Zowe Chat
e Starting Zowe Chat
e Stopping Zowe Chat
Uninstalling Zowe Chat
Uninstalling Zowe Chat
Zowe Intelli) plug-in
Zowe IntelliJ plug-in
e |Installing
Configuring Zowe IntelliJ plug-in
Configuring Zowe IntelliJ plug-in
e (Creating z/OSMF connection
e (reating the connection using the plug-in feature
e (Creating the connection using Zowe Config v2
Using Zowe
Using Zowe
e Zowe server-side components
e Zowe client-side components
e Explore available plug-ins
¢ Incubator components
Using Zowe Desktop
Using Zowe Desktop
¢ Navigating the Zowe Desktop

e Accessing the Zowe Desktop

e Logging in and out of the Zowe Desktop
e Changing user password

e Updating an expired password

¢ Pinning applications to the task bar
e Open application in new tab
Keyboard shortcuts

e Changing application elements size
® Personalizing the Desktop

e Changing the desktop language
Zowe Desktop application plugins

e VT Terminal

e API Catalog

e Editor

e JES Explorer

e |P Explorer

e MVS Explorer

e USS Explorer

Using the Editor
Using the Editor

Specifying a highlighting language
Open a dataset

Deleting a file or folder

Opening a directory

Creating a new directory

Creating a new file

Keyboard shortcuts

Using APl Mediation Layer

Using APl Mediation Layer

AP| Mediation Layer Use Cases

e Using Single Sign On (SSO)

e Using multi-factor authentication
e APl Routing

e Learning more about APIs

e Administrating APIs

e Using the Caching Service

e Using API Catalog

e Additional use case when usig APl Mediation Layer

Information roadmap for Zowe API Mediation Layer

Information roadmap for Zowe API Mediation Layer

Fundamentals

Installing

Configuring and updating

Using Zowe API Mediation Layer
Onboarding APIs

Security

Contributing to Zowe APl Mediation Layer

e Troubleshooting and support
e Community resources
Zowe APl Mediation Layer Single Sign On Overview
Zowe APl Mediation Layer Single Sign On Overview
e Zowe API ML client
e APl service accessed via Zowe APl ML
e Existing services that cannot be modified
e Further resources
Authenticating with a JWT token
Authenticating with a JWT token
e JWT Token-based Login Flow and Request/Response Format
e Obtaining a JWT token
e Making an authenticated request
e Allow the API client to pass the JWT token as a cookie header
® Pass the JWT token in the Authorization: Bearer header
e \Validating JWT tokens
e Refreshing the JWT token
e Token format
Authenticating with client certificates
Authenticating with client certificates
¢ How the Gateway resolves authentication
e Prerequisites when using ZSS
e Configure your z/OS system to support client certificate authentication
e Enabling the internal API ML mapper
e Validate the client certificate functionality
Authenticating with a Personal Access Token
Authenticating with a Personal Access Token
e User APIs
® Generate a token
¢ \Validate a token
¢ Invalidate a specific token
® Invalidate all tokens
e Security Administrator APIs
® Invalidate all tokens for a user
¢ |Invalidate all tokens for a service
e Evict non-relevant tokens and rules
e Using the Personal Access Token to authenticate
Authenticating with OIDC
Authenticating with OIDC
e Usage
e Authentication Flow
® Prerequisites
e OIDC provider prerequisites
e ESM configuration prerequisites
e Parameters in the ESM commands
e API ML OIDC configuration

¢ Troubleshooting

e API ML fails to validate the OIDC access token with the Distributed Identity Provider

e The access token validation fails with HTTP error

Using multi-factor authentication (MFA)

Using multi-factor authentication (MFA)

Prerequisite

Known Limitations and Recommendations

e Unintentional Reuse of MFA Token

* No Notification when Additional Input is Required

e Token Expiration when Stored in the Authorization Dialog in "Try it out"

Routing requests to REST APIs
Routing requests to REST APIs

Terminology

Basic Routing

¢ APl ML Routing to the Versioned service

® Implementation details for routing

Zowe architecture with high availability enablement on Sysplex
API Versioning

¢ Guidelines

Routing with WebSockets
Routing with WebSockets

Security and Authentication
Subprotocols

High availability

Idle Timeout

Diagnostics

Limitations

Using GraphQL APIs
Using GraphQL APIs

Difference between GraphQL APIs and traditional REST APIs
Routing to GraphQL example

How GraphQL Works

Key Concepts of GraphQL

Limitations for the APl Mediation Layer

Multitenancy Configuration

Multitenancy Configuration

Overview of Central and Domain APl MLs
Multitenancy component enablement settings
Onboarding Domain Gateways to the Central Cloud Gateway
e Dynamic Onboarding (recommended) for Domain Gateways
e Static Onboarding for Domain Gateways (deprecated)
Onboarding a Domain Cloud Gateway service to the Central Discovery service
¢ Dynamic Configurations to the Central Discovery service
e Dynamic configuration: YML
e Dynamic configuration: Environment variables
e Validating successful configuration
Establishing a trust relationship between Domain APl ML and Central API ML

e Commands to establish trust between Domain and Central APl MLs

e Using the /registry endpoint in the Central Cloud Gateway
e Configuration for /registry
e Authentication for /registry
e Authorization with /registry
e Requests with /registry
e Response with /registry
® Response with /registry{apimlid}
e Response with GET /cloud-gateway/api/v1/registry/{apimlid}apild={apild}?serviceld={serviceld}
e Validating successful configuration with /registry
e Gateway static definition example (deprecated)
¢ Troubleshooting multitenancy configuration
e ZWESG100W
® No debug messages similar to apiml1 completed with onComplete are produced
Obtaining Information about API Services
Obtaining Information about API Services
e Using API ID in APl ML to locate APIs in different instances
® Protecting Service Information
e Using API Endpoints
¢ Obtaining Information about a Specific Service
e Obtaining Information about All Services
e Obtaining Information about All Services with a Specific API ID
® Response Format
Using Swagger "Try it out” in the API Catalog
Using Swagger "Try it out" in the API Catalog
® Make a request
Using Swagger Code Snippets in the API Catalog
Using Swagger Code Snippets in the API Catalog
e Generate the code snippets
Using Static API services refresh in the API Catalog
Using Static API services refresh in the API Catalog
Onboarding a REST API service with the YAML Wizard
Onboarding a REST API service with the YAML Wizard
e Onboarding your REST service with the Wizard
Using the Caching Service
Using the Caching Service
e Architecture
e Storage methods
¢ Infinispan (recommended)
e VSAM
e Redis
* InMemory
® How to start the Service
e Methods to use the Caching Service API
e Configuration properties
e Authentication
e Direct calls

e Routed calls through APl Gateway

Viewing Service Information and APl Documentation in the API Catalog
Viewing Service Information and APl Documentation in the API Catalog
Changing an expired password via API Catalog
Changing an expired password via API Catalog
Updating user password
Updating user password
e Changing password with SAF provider
e Changing password with z/ZOSMF provider
Using Metrics Service (Technical Preview)
Using Metrics Service (Technical Preview)
e API Mediation Layer Metrics Service Demo Video
e View HTTP Metrics in the Metrics Service Dashboard
SMF records
SMF records
e Configure the main Zowe server to issue SMF records
e SMF record configurable parameters
e Configure rauditx parameters
Using Zowe CLI
Using Zowe CLI
e Supported CPU architectures, operating systems, and package/resource managers
e Operating systems
e Package/resource managers
Displaying help
Displaying help
e Top-level help
e Group, action, and object help
e Launch local web help
e Viewing web help
How command precedence works
How command precedence works
e Command precedence in action
Understanding core command groups
Understanding core command groups
e auth
e config
e daemon
e plugins
e profiles
® provisioning
® zos-console
e zos-files
® 70s-jobs
® 70s-ssh
e zos-workflows
® 70s-tso
e zosmf

Issuing your first command

Issuing your first command
Team configurations
Team configurations
¢ Types of configuration files
e Zowe CLI profile types
e Updating secure credentials
e Benefits of team profiles
® |mportant information about team profiles
Initializing team configuration
Initializing team configuration
e (reating a global team configuration file
e (Creating team plug-in profiles
e Connecting profiles to APl Mediation Layer
Testing connections to z/OSMF
Testing connections to z/OSMF
® Without a profile
e Default profile
e Specific profile
Team configuration for application developers
Team configuration for application developers
¢ |Initializing user configuration
e Editing team configurations
Team configuration for team leaders
Team configuration for team leaders
e Sharing team configuration files
e Profile scenarios
e Access to one or more LPARs that contain services that share the same credentials
e Access to one or more LPARs contain services that do not share the same credentials
e Access to LPARs that access services through one API Mediation Layer
e Access to LPARs that access services through one APl Mediation Layer using certificate authentication
Sharing team configuration files
Sharing team configuration files
e Network drive
® Project repository and web server
How Zowe CLI uses configurations
How Zowe CLI uses configurations
e Learning the terminology
e How configuration files and profiles work together
e Using a profile found in multiple configuration files
e Using multiple properties found in multiple profiles
Managing credential security
Managing credential security
e Secure credential storage
e Configuring secure properties
e Updating secure properties
e Setting secure properties programmatically

Storing properties automatically

Storing properties automatically
Using daemon mode
Using daemon mode
® Preparing for installation
e Enable daemon mode
® Restart daemon mode
e Disable daemon mode
Configure daemon mode on z/Linux operating systems
Configure daemon mode on z/Linux operating systems
Using V1 profiles
Using V1 profiles
e Zowe CLI v1 profile types
e Tips for using Zowe CLI v1 profiles
e Displaying profile help
e Service profiles
e Base profiles
e Tips for using base profiles
e Profile best practices
e Testing connections to z/OSMF
e Without a profile
e Default profile
e Specific profile
Integrating with APl Mediation Layer
Integrating with APl Mediation Layer
® How token management works
e loggingin
® logging out
e Accessing a service through APl ML
e Specifying a base path with Zowe V2 profiles
e Specifying a base path with Zowe V1 profiles
e Accessing multiple services with SSO
e Accessing services through SSO and a service not through API ML
e Accessing services through SSO and a service through API ML but not SSO
e Using client certificates to authenticate to APl ML
Working with certificates
Working with certificates
e Configure certificates signed by a Certificate Authority (CA)
e Extend trusted certificates on client
e Bypass certificate requirement
Using environment variables
Using environment variables
e Store credentials securely in CI/CD pipelines
Formatting environment variables
Formatting environment variables
e Examples of transformed CLI options
Setting environment variables in an automation server

Setting environment variables in an automation server

Using the prompt feature
Using the prompt feature
¢ Enabling a one-time prompt
e Always prompting for a particular option
Writing scripts
Writing scripts
e Sample script library
e Example: Clean up Temporary Data Sets
e Example: Submit Jobs and Save Spool Output
Zowe CLI plug-ins
Zowe CLI plug-ins
Software requirements for Zowe CLI plug-ins
Software requirements for Zowe CLI plug-ins
Installing Zowe CLI plug-ins
Installing Zowe CLI plug-ins
e Installing plug-ins from an online registry
¢ Installing plug-ins from a local package
e Validating plug-ins
e Updating plug-ins
e Update plug-ins from an online registry
e Update plug-ins from a local package
e Uninstall Plug-ins
IBM® CICS® Plug-in for Zowe CLI
IBM® CICS® Plug-in for Zowe CLI
® Use cases
e Commands
e Software requirements
¢ |Installing
e (reating a user profile

e Creating plug-in profiles using a configuration file

e (Creating plug-in profiles using a command
IBM® Db2® Database Plug-in for Zowe CLI
IBM® Db2® Database Plug-in for Zowe CLI
® Use cases
e Commands
e Software requirements
e |Installing

¢ Installing from an online registry

¢ Installing from a local package

¢ Downloading the ODBC driver
¢ |Installing Xcode on MacOS
¢ Installing the plug-in
e Addressing the license requirement
e Server-side license
e C(Client-side license

e (reating a user profile

e Creating plug-in profiles using a configuration file

e (Creating plug-in profiles using a command

M1 processor installation

M1 processor installation

IBM® z/OS FTP Plug-in for Zowe CLI

IBM® z/OS FTP Plug-in for Zowe CLI

® Use cases

e Commands

e Software requirements

¢ |Installing

e (reating a user profile
e (Creating plug-in profiles using a configuration file
e (Creating plug-in profiles using a command
® |[ssuing test commands

IBM® IMS™ Plug-in for Zowe CLI

IBM® IMS™ Plug-in for Zowe CLI

® Use cases

e Commands

e Software requirements

¢ |Installing

e Creating user profiles
e Creating plug-in profiles using a configuration file
e (Creating plug-in profiles using a command

IBM® MQ Plug-in for Zowe CLI

IBM® MQ Plug-in for Zowe CLI

® Use cases

e Using IBM MQ plug-in commands

e Software requirements

¢ Installing

e (reating a user profile
e (Creating plug-in profiles using a configuration file
e Creating plug-in profiles using a command

IDF Plug-in for Zowe CLI

IDF Plug-in for Zowe CLI

e Use case

e Commands

e Software requirements

Installing
e Using
e (SV Format
e Output
Using Zowe Explorer
Using Zowe Explorer
e Supported operating systems, environments, and platforms
e Operating systems
¢ Integrated development environments:
e Using Zowe Explorer in remote environments

e Using a specific version of Zowe Explorer

e Zowe Explorer is installed
® Preventing automatic version updates
¢ |Installing a specific previous version
e Zowe Explorer is not installed
¢ |Installing a previous version of Zowe Explorer
e (Credentials in Zowe Explorer
e Preventing Zowe Explorer from storing credentials
¢ Disabling Secure Credential Storage of credentials
e Zowe Explorer v2
e Zowe Explorer v1
Usage tips
Usage tips
e Data sets, USS, and jobs persistence settings
e |dentify syntax errors with a syntax highlighter
e Configure the detected language of a file or data set
e Edit a profile
e Delete a profile
e Hide a profile
e Open recent members
Working with data sets
Working with data sets
e Viewing data sets and using multiple filters
e Viewing data sets with member filters
e Refreshing the list of data sets
e Renaming data sets
e Copying data set members
e Editing and uploading a data set member
® Preventing merge conflicts
e (reating data sets and specifying parameters
e (reating data sets and data set members
¢ Deleting a data set member and a data set
¢ Viewing data set, member attributes
® Viewing and accessing multiple profiles simultaneously
e Filtering partitioned data set members
e Filtering all partitioned data set members under a specific profile
e Filtering members for a single partitioned data set
e Sorting partitioned data set members
e Sorting all partitioned data set members under a specific profile
e Sorting members for a single partitioned data set
e Submiting a JCL
e Allocate like
Working with USS files
Working with USS files
e Viewing Unix System Services (USS) files
e Refreshing the list of files
e Renaming USS files

Downloading, editing, and uploading existing USS files

e (Creating and deleting USS files and directories
e (reating a directory
e (reating a file
e Deleting a file

e Deleting a directory

e Viewing and accessing multiple USS profiles simultaneously

Working with jobs
Working with jobs
® Viewing a job
¢ Downloading spool content
e Sorting jobs
e [ssuing MVS commands
e [ssuing TSO commands
e Polling a spool file
e Defining a default interval for polling spool files
e Polling a spool file at set intervals
e Stopping spool file polling
e Polling a spool file manually
e Configuring the keyboard shortcut for manual polling
Zowe Explorer CICS Extension
Zowe Explorer CICS Extension
¢ |Installing
¢ Installing from Visual Studio Code Extensions
e Installing from a VSIX file
¢ Uninstalling
Using Zowe Explorer CICS Extension
Using Zowe Explorer CICS Extension
e System requirements
e (lient side requirements
e Server side requirements
e Features
Creating Zowe Explorer CICS Extension profiles
Creating Zowe Explorer CICS Extension profiles
¢ Using Zowe team configuration
e Using Zowe V1 profiles
e Updating profiles
e Updating profiles using Zowe team profiles
e Updating Zowe V1 profiles
¢ Hiding profiles
e Deleting profiles
e Deleting Zowe team profiles
e Deleting Zowe V1 profiles
Using CICS resources
Using CICS resources
¢ Showing and filtering resources in a region
e Showing and filtering resources in a plex

¢ Showing and filtering resources in an 'All' resource tree

e Showing attributes
¢ Enabling and disabling
e New copy and phase in
e Opening and closing local files
Overriding untrusted TLS certificates
Overriding untrusted TLS certificates
Usage tips
Usage tips
Providing feedback and contributing
Providing feedback and contributing
e Filing an issue
e Chatting with the community
Zowe Explorer FTP Extension
Zowe Explorer FTP Extension
¢ |Installing
e Uninstalling
Using Zowe Explorer FTP Extension
Using Zowe Explorer FTP Extension
e System Requirements
e Using
e (Creating an FTP profile with Zowe Explorer
Supported functionality
Supported functionality
e Supported data set functionalities
e Supported USS functionalities
e Supported jobs functionalities
Providing feedback and contributing
Providing feedback and contributing
e Chatting with the community
Using Zowe Chat
Using Zowe Chat
® Mouse navigation
¢ |Interacting through commands
e Zowe Chat commands
e Zowe CLI commands
Using Zowe IntelliJ plug-in
Using Zowe IntelliJ plug-in
e Settings
e Auto-sync option
e Batch size option
e Working with Files Working Sets
e Working with z/OS PS datasets
e Working with z/OS PDS datasets
e "Allocate Like" feature
e "Submit Job" feature
e Working with USS files
e Copy/move functionality

e (Cross-system copy
e Working with JES Working Sets
e TSO Command Line Interface
Working Sets Concept
Working Sets Concept
¢ Files Working Set
e JES Working Set
Using Zowe SDKs
Using Zowe SDKs
e SDK documentation
e Software requirements
¢ Nodejs
e Python
e Getting started
e |nstall SDK from online registry
e |nstall SDK from local package
e Using
e Using - Nodejs
e Using - Python
e Contributing
Extending Zowe
Extending Zowe
e Extending the server side
e Extending Zowe AP| Mediation Layer
e Developing for Zowe Application Framework
e Extending the client side
e Extend Zowe CLI
e Extend Zowe Explorer
e Add a plug-in to the Zowe Desktop
e Sample extensions
e Sample Zowe APl and API Catalog onboarded service
e Sample Zowe Desktop extension
Zowe Conformance Program
Zowe Conformance Program
¢ Introduction
* How to participate
e How to suggest updates to the Zowe conformance program
Packaging z/OS extensions
Packaging z/OS extensions
e Zowe server component package format
e Zowe component manifest
e Sample manifests
Server component schemas
Server component schemas
® Requirements
e Additional information

e Example

Example manifest
Example schema

Validation

Component package registries

Component package registries

Registry examples

Installing an extension
Upgrading an extension
Uninstalling extensions
Searching for extensions

Configuring zwe to use a registry

Using multiple registries

Setting up a registry

npm

Making your own handler

Handler code

Component Packaging Requirements

npm

Additional resources

Zowe server component runtime lifecycle

Zowe server component runtime lifecycle

Zowe runtime lifecycle

Zowe component runtime lifecycle

Validate
Configure
Start

Creating and adding Zowe extension containers

Creating and adding Zowe extension containers

1. Build and publish an extension image to a registry

2. Define Deployment or Job object

3. Start your component

Zowe Containerization Conformance Criteria

Zowe Containerization Conformance Criteria

Image

Base Image

Multi-CPU Architecture
Image Label

Tag

Files and Directories
User zowe

Multi-Stage Build

Runtime

General rules
Persistent Volume(s)
Files and Directories
ConfigMap and Secrets

ompzowe/zowe-launch-scripts Image and initContainers

Command Override
Environment Variables

Cl/Ccbh

Build, Test and Release

Onboarding Overview

Onboarding Overview

Prerequisites

Service Onboarding Guides

Recommended guides for services using Java
Recommended guides for services using Node.js
Guides for Static Onboarding and Direct Call Onboarding

Documentation for legacy enablers

Verify successful onboarding to the API ML

Verifying service discovery through Discovery Service

Verifying service discovery through the API Catalog

Sample REST API Service

Certificate management in Zowe APl Mediation Layer

Certificate management in Zowe APl Mediation Layer

Running on localhost

How to start API ML on localhost with full HTTPS

Certificate management guide

Generate a certificate for a new service on localhost

Add a service with an existing certificate to APl ML on localhost

Service registration to Discovery Service on localhost

Zowe runtime on z/OS

Import the local CA certificate to your browser
Generate a keystore and truststore for a new service on z/OS
Add a service with an existing certificate to APl ML on z/OS

e Procedure if the service is not trusted

API ML truststore and keystore
API ML SAF Keyring
Quick Start for Development

Quick Start for Development

Deploy APl Mediation Layer locally

Deploy APl Mediation Layer locally

General information

Dummy Authentication Provider
Onboarding a REST API service with the Plain Java Enabler (PJE)
Onboarding a REST API service with the Plain Java Enabler (PJE)

Introduction
Onboarding your REST service with APl ML
Prerequisites

Configuring your project

Gradle build automation system
Maven build automation system

Configuring your service

REST service identification

e Administrative endpoints

e APlinfo

e APl routing information

e APl Catalog information

e Authentication parameters

e APl Security

e SAF Keyring configuration

e Eureka Discovery Service

e Custom Metadata

Registering your service with APl ML
Validating the discoverability of your API service by the Discovery Service
Troubleshooting

e Log messages during registration problems

APl Mediation Layer onboarding configuration

API Mediation Layer onboarding configuration

Introduction
Configuring a REST service for APl ML onboarding

Plain Java Enabler service onboarding API

e Automatic initialization of the onboarding configuration by a single method call

Validating successful onboarding with the APl Mediation Layer
Loading YAML configuration files

¢ Loading a single YAML configuration file

e Loading and merging two YAML configuration files

Using APl Mediation Layer Message Service

Using APl Mediation Layer Message Service

Message Definition
Creating a message
Mapping a message
e API ML Logger

Onboarding a Spring Boot based REST API Service
Onboarding a Spring Boot based REST API Service

Outline of onboarding a REST service using Spring Boot

Selecting a Spring Boot Enabler

Configuring your project

e Gradle build automation system

e Maven build automation system

Configuring your Spring Boot based service to onboard with APl ML
e Sample API ML Onboarding Configuration

e Authentication properties

e APl ML Onboarding Configuration Sample

e SAF Keyring configuration

e Custom Metadata

Registering and unregistering your service with APl ML

e Unregistering your service with API ML

e Basic routing

Adding APl documentation

Validating the discoverability of your API service by the Discovery Service

e Troubleshooting
e Log messages during registration problems
Onboarding a Micronaut based REST API service
Onboarding a Micronaut based REST API service
e Set up your build automation system
e Configure the Micronaut application
e Add API ML configuration
e Add Micronaut configuration
e (Optional) Set up logging configuration
e Validate successful registration
Onboarding a Node.js based REST API service
Onboarding a Node.js based REST API service
¢ Introduction
e Onboarding your Node.js service with API ML
® Prerequisites
¢ |Installing the npm dependency
e Configuring your service
e Registering your service with APl ML
e Validating the discoverability of your API service by the Discovery Service
Onboarding a REST APl without code changes required
Onboarding a REST API without code changes required
¢ |dentify the APIs that you want to expose
e Define your service and APl in YAML format
e Route your API
e Customize configuration parameters
e Add and validate the definition in the APl Mediation Layer running on your machine
e Add a definition in the APl Mediation Layer in the Zowe runtime
e (Optional) Check the log of the APl Mediation Layer
e (Optional) Reload the services definition after the update when the APl Mediation Layer is already started
Customizing Metadata (optional)
Customizing Metadata (optional)
API ML Routing Overview
API ML Routing Overview
e Basic Routing
e Deployments
® Making a GET call to a service through single instance of APl ML
e A GET call to a service with a single version on a single instance
e A GET call to a service with multiple versions on a single instance
e GET calls to multiple instances of a service
® A GET call to a service through multiple APl Mediation Layer Instances
e Same LPAR Multiple APl Mediation Layer Instances
e Different LPAR Multiple APl Mediation Layer Instances
e Advanced Configuration
Implementing routing to the API Gateway
Implementing routing to the API Gateway
e Basic Routing using only the service ID

API Versioning

API Versioning

e \ersioning

e REST

Data Model

e Service and instance

API Versioning

Routing Websocket based APIs
Routing Websocket based APIs

Configuring the service for Websockets

Creating an Extension for APl ML

Creating an Extension for APl ML

Call the REST endpoint for validation

Implementing a new SAF IDT provider

Implementing a new SAF IDT provider

How to create a SAF IDT provider

How to integrate your extension with APl ML
How to use the SAF IDT provider

How to use an existing SAF IDT provider

Single Sign On Integration for Extenders

Single Sign On Integration for Extenders

Accepting JWT

Accepting SAF IDT

Accepting Passtickets

Bypassing authentication

Custom way to accept client certificates
Accepting z/OSMF LTPA token

ZAAS Client
ZAAS Client

Pre-requisites

API Documentation

e Obtain a JWT token (login)

e \Validate and get details from the token (query)
® |nvalidate a JWT token (logout)

e Obtain a PassTicket (passTicket)

Getting Started (Step by Step Instructions)

Zowe Application Framework overview

Zowe Application Framework overview

How Zowe Application Framework works
Tutorials

Samples

e Sample Iframe App

e Sample Angular App

e Sample React App

e User Browser Workshop Starter App

Plug-ins definition and structure

Plug-ins definition and structure

pluginDefinition.json

e Application Plugin filesystem structure
e Root files and directories
e Dev and source content
e nodeServer
e webClient
e Runtime content
e lib
* web
e Packaging applications as compressed files
e Default user configuration
e App-to-App Communication
e Documentation
e Location of Plugin files
¢ pluginsDir directory
e Application Dataservices
e Application Configuration Data
Building plugin apps
Building plugin apps
¢ Building web content
¢ Building app server content
e Building zss server content
e Tagging plugin files on z/OS
e Building Javascript content (* js files)
¢ Installing
e Packaging
Installing Plugins
Installing Plugins
e By filesystem
e Adding/Installing
® Removing
e Upgrading
¢ Modifying without server restart (Exercise to the reader)
e By REST API
¢ Plugin management during development
¢ |Installing
e Removing
Embedding plugins
Embedding plugins
e How to interact with embedded plugin
® How to destroy embedded plugin
® How to style a container for the embedded plugin
e Applications that use embedding
Dataservices
Dataservices
e Defining dataservices
e Schema

e Defining Java dataservices

® Prerequisites
e Defining Java dataservices
e Defining Java Application Server libraries
® Java dataservice logging
® Java dataservice limitations
e Using dataservices with RBAC
e Dataservice APIs
e Router-based dataservices
e HTTP/REST Router dataservices
e WebSocket Router dataservices
e Router dataservice context
e Router storage API
e 7SS based dataservices
e HTTP/REST ZSS dataservices
e 7SS dataservice context and structs
e 7SS storage API
e Documenting dataservices
Authentication API
Authentication API
e Handlers
e Handler installation
e Handler configuration
e Handler context
e Handler capabilities
e Examples
e High availability (HA)
e REST API
e Check status
e Authenticate
e User not authenticated or not authorized
® Not authenticated
® Not authorized
e Refresh status
e |logout
e Password changes
Internationalizing applications
Internationalizing applications
¢ Internationalizing Angular applications
® |nternationalizing React applications
® Internationalizing application desktop titles
Zowe Desktop and window management
Zowe Desktop and window management
e Loading and presenting application plug-ins
e Plug-in management
e Application management
e Windows and Viewports

e Viewport Manager

Injection Manager

® Plug-in definition
e logger

e Launch Metadata
® Viewport Events
e Window Events

¢ Window Actions

Framework APl examples

Configuration Dataservice

Configuration Dataservice

Resource Scope

REST API

e REST query parameters
e REST HTTP methods

e GET
e PUT
e DELETE

e Administrative access and group
Application API

Internal and bootstrapping
Packaging Defaults

Plug-in definition

Aggregation policies

Examples

URI Broker
URI Broker

Accessing the URI Broker

* Natively:

¢ Inan iframe:

Functions

e Accessing an application plug-in's dataservices
e HTTP Dataservice URI
® Websocket Dataservice URI

® Accessing application plug-in's configuration resources
e Standard configuration access
e Scoped configuration access

e Accessing static content

e Accessing the application plug-in's root

e Server queries

e Accessing a list of plug-ins

Application-to-application communication

Application-to-application communication

Why use application-to-application communication?
Actions

e Action target modes

e Action types

e |oading actions

e App2App via URL
e Samples
e Dynamically
e Saved on system
® Recognizers
® Recognition clauses
® Loading Recognizers at runtime
e Dynamically
e Saved on system
e Recognizer example
e Dispatcher
® Registry
e Pulling it all together in an example
Configuring IFrame communication
Configuring IFrame communication
Error reporting Ul
Error reporting Ul
e ZluxPopupManagerService
e ZluxErrorSeverity
e ErrorReportStruct
¢ Implementation
e Declaration
e Usage
e HTML
Logging utility
Logging utility

Logging objects

Logger IDs
e Accessing logger objects
e logger
e App Server
e Web
e Component logger
® App Server

Logger API
e Component Logger API

Log Levels
¢ Logging verbosity
e Configuring logging verbosity

e Server startup logging configuration

e Using log message IDs
® Message ID logging examples

Using Conda to make and manage packages of Application Framework Plugins

Using Conda to make and manage packages of Application Framework Plugins

¢ |Initial Conda setup
¢ Managing Conda channels

e Searching for packages

e Using Conda with Zowe
e Setting environment variables temporarily:
e Setting environment variables persistently
e |nstalling a Zowe plugin
e Zowe plugin configuration
e Zowe package structure
e Building Conda packages for Zowe
¢ Defining package properties
e (Creating build step
e Lifecycle scripts
¢ Install automation
e Uninstall automation
e Adding configuration to Conda packages
Developing for Zowe CLI
Developing for Zowe CLI
® How to contribute
e Getting started
e Contribution guidelines
e Tutorials
e Plug-in development overview
¢ Imperative CLI Framework documentation
¢ Authentication mechanisms
Setting up your development environment
Setting up your development environment
e Prerequisites
e |Initial setup
e Branches
e Clone zowe-cli-sample-plugin and build from source
e (Optional) Run the automated tests
e Next steps
Creating plug-in lifecycle actions
Creating plug-in lifecycle actions
® Implenting lifeycyle actions
Installing the sample plug-in
Installing the sample plug-in
e Overview
¢ Installing the sample plug-in to Zowe CLI
e Viewing the installed plug-in
e Using the installed plug-in
e Testing the installed plug-in
e Next steps
Extending a plug-in
Extending a plug-in
e Overview
e C(reating a Typescript interface for the Typicode response data
e Creating a programmatic API

e Exporting interface and programmatic API for other Node.js applications

e Checkpoint one
e (Creating a command definition
e Defining command to list group
e (Creating a command handler
e Checkpoint two
e Using the installed plug-in
e Summary
e Next steps
Developing a new Zowe CLI plug-in
Developing a new Zowe CLI plug-in
e Overview
e Setting up the new sample plug-in project
e Updating package.json
e Adjusting Imperative CLI Framework configuration
e Adding third-party packages
e (Creating a Node s client-side API
e Building your plug-in source
e (reating a Zowe CLI command
e Trying your command
¢ Bringing together new tools!
e Next steps
Implementing profiles in a plug-in
Implementing profiles in a plug-in
Extending Zowe Explorer
Extending Zowe Explorer
Information roadmap for Zowe Client SDKs
Information roadmap for Zowe Client SDKs
¢ Fundamentals
e |Installing
e Using Zowe Client SDKs
e Zowe Node,js SDK
e Zowe Python SDK
e Contributing to Zowe Client SDKs
e Troubleshooting and support
e Community resources
Developing for Zowe SDKs
Developing for Zowe SDKs
Troubleshooting Zowe
Troubleshooting Zowe
e How to start troubleshooting
e Known problems and solutions
e Troubleshooting Zowe server-side components
e Troubleshooting Zowe client-side components
e Verifying a Zowe release's integrity
e Understanding the Zowe release
Understanding Zowe release versions

Understanding Zowe release versions

e Zowe releases

® Major release

® Minor release

e Patch
Checking your Zowe version release number
Checking your Zowe version release number
e Server side

e Using other commands

e Using the manifest file
e C(Client side

e Zowe CLI

e Zowe CLI plug-ins

e Zowe Explorer for Visual Studio Code

e Zowe Explorer for Visual Studio Code Extensions

e Zowe IntelliJ Plug-in
Gathering Information for Support or Troubleshooting
Gathering Information for Support or Troubleshooting
e Describe your environment

e Tips on gathering this information

e 7/0OS release level
e Zowe version

e Describe your issue
e Provide the logs

e Enabling debugging and tracing
e Screenshots
Verify Zowe runtime directory
Verify Zowe runtime directory
Troubleshooting Kubernetes environments
Troubleshooting Kubernetes environments

e |SSUE: Deployment and ReplicaSet failed to create pod

e |SSUE: Failed to create services
Diagnosing Return Codes
Diagnosing Return Codes
Troubleshooting certificate configuration
Troubleshooting certificate configuration
e PKCS12 server keystore generation fails in Java 8 SR7FP15, SR7 FP16, and SR7 FP20
e Eureka request failed when using entrusted signed z/OSMF certificate
e Zowe startup fails with empty password field in the keyring setup
e Certificate error when using both an external certificate and Single Sign-On to deploy Zowe
® Browser unable to connect due to a CIPHER error
e APl Components unable to handshake
e Java z/OS components of Zowe unable to read certificates from keyring
e Java z/OS components of Zowe cannot load the certificate private key pair from the keyring
e Exception thrown when reading SAF keyring {ZWEDO148E}
e ZWEAMAJ4O0OE Error initializing SSL Context when using Java 11
¢ Failed to load JCERACFKS keyring when using Java 11

Troubleshooting startup of Zowe z/OS components

Troubleshooting startup of Zowe z/OS components
How to check if ZWESLSTC startup is successful

Check the startup of APl Mediation Layer
Check the startup of Zowe Desktop
Check the startup of Zowe Secure Services

Troubleshooting Zowe APl Mediation Layer
Troubleshooting Zowe APl Mediation Layer
¢ Install API ML without Certificate Setup
e Enable API ML Debug Mode
e Change the Log Level of Individual Code Components
e Gather atypical debug informaiton
e Debug and Fix Common Problems with SSL/TLS Setup
e Known Issues
e APl ML stops accepting connections after z/OS TCP/IP stack is recycled
e SEC0002 error when logging in to API Catalog
e Connection refused
e Configure z/OSMF
e Missing z/ZOSMF host name in subject alternative names
e Secure fix
¢ Insecure fix
e |nvalid z/OSMF host name in subject alternative names
® Request a new certificate
e Re-create the Zowe keystore
e API ML throws I/O error on GET request and cannot connect to other services
Error Message Codes
Error Message Codes
e API mediation utility messages
e ZWEAMOOOI
e ZWEAMOO1I
® APl mediation common messages
e ZWEAO102E
e ZWEAO104W
e ZWEAO105W
e ZWEAO106W
e ZWEAO401E
e Common service core messages
e ZWEAM100E
e ZWEAM101E
e ZWEAM102E
e ZWEAM103E
e ZWEAM104E
e Z7WEAG140E
e ZWEAG141E
e ZWEAM400E
e ZWEAMS500W
e ZWEAMS501W
e ZWEAMS502E

e ZWEAMS503E
e ZWEAMb504E
e ZWEAMS505E
e ZWEAMS506E
e ZWEAMS507E
e ZWEAMS508E
e ZWEAMb509E
e ZWEAMS510E
e ZWEAMS5T1E
e ZWEAM600W
e ZWEAM700E
e ZWEAM701E
Security common messages
e ZWEAT100E
e ZWEAT103E
e ZWEAT403E
e ZWEAT409E
e ZWEAT410E
e ZWEAT411E
e 7ZWEAT412E
e 7ZWEAT413E
e 7ZWEAT414E
e ZWEAT415E
e ZWEAT416E
e ZWEAT500E
e ZWEATS01E
e ZWEAT502E
e ZWEAT503E
e ZWEAT504E
e ZWEAT505E
e ZWEAT601E
e ZWEAT602E
e ZWEAT603E
e ZWEAT604E
e ZWEAT605E
e ZWEAT606E
e ZWEAT607E
e ZWEAT608E
e ZWEAT609W
Security client messages
e ZWEAST00E
e ZWEAST01E
e ZWEAS103E
e ZWEAS104E
e ZWEAS105E
e ZWEAS120E
e ZWEAS121E

e ZWEAS123E
e ZWEAS130E
e ZWEAS131E
ZAAS client messages
e ZWEAS100E
e ZWEAS120E
e ZWEAS121E
e ZWEAS122E
e ZWEAS170E
e ZWEAS400E
e ZWEAS401E
e ZWEAS404E
e ZWEAS417E
e ZWEAS130E
e ZWEAS500E
e ZWEASS501E
e Z7WEASS502E
e ZWEAS503E
Discovery service messages
e ZWEAD400E
e ZWEAD401E
e ZWEAD700W
e ZWEAD701E
e ZWEAD702W
e ZWEAD703E
e ZWEAD704E
Gateway service messages
e ZWEAG500E
e ZWEAG700E
e ZWEAG701E
e ZWEAG702E
e ZWEAG704E
e ZWEAG705E
o 7WEAG706E
e ZWEAG707E
e ZWEAG708E
e ZWEAG709E
e ZWEAG710E
e ZWEAG711E
e ZWEAGT712E
e ZWEAG713E
e ZWEAG714E
e ZWEAG715E
e ZWEAG716E
e ZWEAGT717E
e ZWEAG718E
e ZWEAGT719I

e ZWEAGT00E
e ZWEAGIT01E
e ZWEAG102E
e ZWEAG103E
e ZWEAG104E
e ZWEAG105E
e ZWEAG106W
e ZWEAG107W
e ZWEAGT08E
e ZWEAGT09E
e ZWEAGT10E
e ZWEAG120E
e ZWEAG121E
e ZWEAS123E
e Z7WEAG130E
e ZWEAGT31E
e ZWEAG150E
e ZWEAGT51E
e ZWEAGT60E
e ZWEAGIT61E
e ZWEAG162E
e ZWEAG163E
e ZWEAG164E
e ZWEAG165E
e ZWEAGT66E
e ZWEAGT67E
e ZWEAG168E
e ZWEAG169E
e ZWEAG170E
e ZWEAG171E
e ZWEAT607E
e ZWEAG180E
e ZWEAG181W
e ZWEAG182E
e ZWEAG183E
e ZWEAG184E
e ZWEAG185W
e ZWEAG186E
e ZWEAG187W
e ZWEAG188W
API Catalog messages
e ZWEAC100W
e ZWEAC101E
e ZWEAC102E
e ZWEAC103E
e ZWEAC104E
e ZWEAC700E

e ZWEAC701W
e ZWEAC702E
e ZWEAC703E
e ZWEAC704E
e ZWEAC705W
e ZWEAC706E
e ZWEAC707E
e ZWEAC708E
e ZWEAC709E
Troubleshooting Zowe Application Framework
Troubleshooting Zowe Application Framework
e Desktop apps fail to load
e NODEJSAPP disables immediately
e Cannot log in to the Zowe Desktop
e 7SS server unable to communicate with ZIS
e Application Framework unable to communicate with zssServer
e Slow performance of the VT terminal on SSH
e Application Framework unable to communicate with APl Mediation Layer
e Server startup problem ret=1115
e Server error EACCESS on z/os
e Application plug-in not in Zowe Desktop
e Error: You must specify MVD_DESKTOP_DIR in your environment
e Error: Exception thrown when reading SAF keyring {ZWEDO148E}
e Warning: Problem making eureka request { Error: connect ECONNREFUSED }
® Warning: Zowe extensions access to ZSS security endpoints fail
Gathering information to troubleshoot Zowe Application Framework
Gathering information to troubleshoot Zowe Application Framework
e Basic information
e Javascript console output
Raising a Zowe Application Framework issue on GitHub
Raising a Zowe Application Framework issue on GitHub
Enabling tracing
Enabling tracing
e Basic debugging
e Advanced debugging for App Server
e Advanced debugging for ZSS
app-server Return Codes
app-server Return Codes
App-server Error Message Codes
App-server Error Message Codes
e App-server informational messages
e ZWEDO0020I
e ZWEDO0O021I
e ZWEDO0022I
e ZWEDO0023|
e ZWEDO0024l
e ZWEDO0025I

ZWEDOQ026!
ZWEDOQ0271
ZWEDOQ028lI
ZWEDO0029I
ZWEDOQO031I
ZWEDO0O033I
ZWEDO0O036!
ZWEDO0O0371
ZWEDO0O038I
ZWEDOQ039!I
ZWEDOQ040!I
ZWEDOQ041I
ZWEDO00421
ZWEDO0043I
ZWEDO0044I
ZWEDO0O045I
ZWEDO0O046!
ZWEDOQ0471
ZWEDOQ048I
ZWEDOQ049I
ZWEDOO050I
ZWEDO00521
ZWEDO0O53I
ZWEDO0054!
ZWEDOO55I
ZWEDO0O56!
ZWEDOQO59I
ZWEDOQ062!
ZWEDOQ064!
ZWEDO0O066!
ZWEDO0O0671
ZWEDO0OQ70I
ZWEDO0O0721
ZWEDO0O086I
ZWEDOQ0871
ZWEDOQ090I
ZWEDOQ091I
ZWEDO00921
ZWEDO0093I
ZWEDO0094!
ZWEDO0Q95I
ZWEDO0096!
ZWEDO109I
ZWEDO110l
ZWEDO111l
ZWEDO112I
ZWEDO114l

ZWEDO115I
ZWEDO116l
ZWEDO1171
ZWEDO118lI
ZWEDO119I
ZWEDO0120I
ZWEDO124l
ZWEDOQ125I
ZWEDO0129I
ZWEDO0130l
ZWEDOQ154l
ZWEDOQ158l
ZWEDO159E
ZWEDO160I
ZWEDO0205I
ZWEDOQ211l
ZWEDOQ212I
ZWEDOQ213l
ZWEDOQ214l
ZWEDO02871
ZWEDO0290!I
ZWEDO02921
ZWED0294|
ZWEDO0295I
ZWEDO0299!I
ZWEDO0300!I
ZWEDO0301I
ZWEDO03021
ZWEDO0004W
ZWEDO0O6W
ZWEDO0O7W
ZWEDO008W
ZWEDOO13W
ZWEDOQ014W
ZWEDOQOO15W
ZWEDOO16W
ZWEDOQOO17W
ZWEDO018W
ZWEDOO19W
ZWEDO0020W
ZWEDO0021W
ZWEDO0027W
ZWEDO0028W
ZWEDOQ029W
ZWEDO030W
ZWEDO0032W
ZWEDO0033W

ZWEDOQ034W
ZWEDOQO035W
ZWEDOQ036W
ZWEDO037W
ZWEDO0038W
ZWEDO0039W
ZWEDO0040W
ZWEDO0041W
ZWEDOQ042W
ZWEDOQ043W
ZWEDOQ044W
ZWEDO0045W
ZWEDO0046W
ZWEDO0048W
ZWEDO049W"
ZWEDOO51W
ZWEDOQ052W
ZWEDOQO053W
ZWEDOQ054W
ZWEDOQO55W
ZWEDO056W
ZWEDO0O57W
ZWEDO0058W
ZWEDOO59W
ZWEDOO60W
ZWEDOQOO061W
ZWEDQ0062W
ZWEDOQO063W
ZWEDO0064W
ZWEDO065W
ZWEDO0066W
ZWEDO0068W
ZWEDO069W
ZWEDOO70W
ZWEDOQO71W
ZWEDOQ072W
ZWEDOQO073W
ZWEDO0074W
ZWEDO075W
ZWEDO076W
ZWEDOO77W
ZWEDO078W
ZWEDOQOO79W
ZWEDO080W
ZWEDOQ081W
ZWEDO0082W
ZWEDO0083W

ZWEDOQ084W
ZWEDOQ085
ZWEDOQO086W
ZWEDO087W
ZWEDO146W
ZWEDO0148W
ZWEDO0149W
ZWEDO150W
ZWEDO151W
ZWEDO152W
ZWEDO153W
ZWEDOQ154W
ZWEDO155W
ZWEDO156W
ZWEDO157W
ZWEDO158W
ZWEDO159W
ZWEDO166W
ZWEDO167W
ZWEDO168W
ZWEDO169W
ZWEDO170W
ZWEDO171W
ZWEDO172W
ZWEDO173W
ZWEDO174W
ZWEDO175W
ZWEDO177W
ZWEDO178W
ZWEDO179W
ZWEDOOO1E
ZWEDOOO2E
ZWEDOOO3E
ZWEDOOO4E
ZWEDOOOSE
ZWEDOOOGE
ZWEDOOO7E
ZWEDOOOSE
ZWEDOOO9E
ZWEDOO10E
ZWEDOO11E
ZWEDOO12E
ZWEDOO13E
ZWEDOO14E
ZWEDOO15E
ZWEDOO16E
ZWEDOQO17E

e Z7WEDOQOO18E
e ZWEDOOT9E
e ZWEDOQO020E
e ZWEDOQO021E
e ZWEDOQO022E
e ZWEDOQO023E
e ZWEDOQO024E
e ZWEDOQO25E
e Z7WEDOQO26E
e ZWEDOQO27E
e Z7WEDOQO28E
e ZWEDOO38E
e ZWEDOQO39E
e ZWEDOQO40E
e ZWEDOQO41E
e ZWEDOQO42E
e Z7WEDOQO43E
e ZWEDOQO44E
e Z7WEDOQO45E
e ZWEDOQO46E
e ZWEDOQO47E
e ZWEDOQO49E
e ZWEDOO50E
e ZWEDOQO51E
e Z7WEDOQO52E
e Z7WEDOOS53E
e ZWEDO1T11E
e ZWEDO112E
e ZWEDO113E
e ZWEDO114E
e ZWEDO115E
e ZWEDO145E
e ZWEDO146E
e Z7WEDO147E
e Z7WEDO148E
e Z7WEDO149E
e ZWEDO150E
e ZWEDO151E
e ZWEDO152E
e ZWEDO153E
e ZWEDO154E
e ZWEDO155E
e Z7WEDO156E
e ZWEDO157E
e Z7WEDO158E
e 7SS Error Message Codes
e 7SS Error Message Codes

ZSS informational messages
e ZWES1007I
e ZWES1008I
e ZWES1010I
e ZWES1013I
e ZWES1014l
e ZWES1035

e ZWES1038I
e ZWES1039I
e ZWES1061I
e ZWES1063

e ZWES1064I
e ZWES1100I
e ZWES1101I
e ZWES1102I
e ZWES1600I
e ZWES1601I
ZSS error messages
e ZWES1001E
e ZWES1002E
e ZWES1006E
e ZWES1011E
e ZWES1016E
e ZWES1017E
e ZWES1020E
e ZWES1021E
e ZWES1022E
e ZWES1034E
e ZWES1036E
e ZWES1037E
e ZWES1065E
e ZWES1500E
ZSS warning messages
e ZWES1000W
e ZWES1004W
e ZWES1005W
e ZWES1009W
e ZWES1012W
e ZWES1060W
e ZWES1103W
e ZWES1200W
e ZWES1201W
e ZWES1202W
e ZWES1103W
e ZWES1200W
e ZWES1202W
e ZWES1400W

o ZWES1401W
e ZWES1402W
e ZWES1403W
e ZWES1404W
e ZWES1406W
e ZWES1407W
e ZWES1408W
e ZWES1409W
e ZWES1410W
o ZWES1411W
e ZWES1412W
e ZWES1413W
e ZWES1414W
e ZWES1415W
e ZWES1416W
e ZWES1417W
e ZWES1418W
o ZWES1419W
e ZWES1602W
e ZWES1603W
e ZWES1604W
e ZWES1605W
e ZWES1606W
e 7IS message codes
® 7IS message codes
e ZIS cross-memory server messages
e ZWES0001I
e ZWES0002|
e ZWES0003
e ZWES0004I
e ZWESOOO5E
e ZWESOOO6E
e ZWESOO0O7E
e ZWESOOO8E
e ZWESOOQO9E
e ZWESO010E
e ZWESO011E
e ZWES0012I
e ZWESO013E
e ZWESO014E
e ZWESO015E
e ZWES0016l
e ZWES0017W
e ZWESO018W
e ZWESO019W
e ZWES0020E
e ZWESO0021E

e ZWES0098I
e ZWES0099I
ZIS Auxiliary Server messages
e ZWES0050I
e ZWES0051I
e ZWES0052I
e ZWESO053E
e ZWESO054E
e ZWESOO55E
e ZWESOO056E
e ZWESOO57E
e ZWESOO58E
e ZWESOO59E
e ZWESO060E
e ZWESO061E
e ZWES0062E
e ZWESO063E
e ZWES0064W
e ZWES0065W
e ZWESOO66E
e ZWESO067E
e ZWES0068W
e ZWES0069W
e ZWES0070I
e ZWES0071I
e ZWES0072I
e ZWES0073

e ZWES0074W
e ZWES0075W
e ZWES0076W
e ZWES0077W
e ZWES0078I
e ZWES0079I
e ZWES0080I
e ZWESOO81E
e ZWES0082W
Core cross-memory server messages
e ZWES0100I
e ZWES0101I
e ZWESO102E
e Z7WES0103

e ZWES0104I
e ZWES0105

e ZWESO106E
e ZWES0107I
e ZWESO108W
e ZWES0109I

ZWESO110E
ZWESO1111
ZWESO112E
ZWESO0113
ZWESO0114l
ZWESO115E
ZWESO116E
ZWESO117E
ZWESO118E
ZWES0200I
ZWES0201E
ZWES0202E
ZWES0203E
ZWESQ0204E
ZWESO0205E
ZWES0206E
ZWES0207E
ZWES0208E
ZWES0209E
ZWES0210W
ZWES0211E
ZWES0212E
ZWES0213E
ZWESO0214E
ZWESOQ215E
ZWES0216E
ZWES0217E
ZWES0218E
ZWES0219E
ZWES0220I
ZWES02211
ZWES0222]
ZWES0223
ZWESQ0224W
ZWES0225W
ZWES0226W
ZWES0227W
ZWES0228W
ZWES0229W
ZWES0230W
ZWESO0231E
ZWESQ232E
ZWES0233E
ZWES0234E
ZWES0235E
ZWES0236E
ZWESQ237E

e ZWES0238E

e ZWES0239E

e ZWES0240W

e ZWES0241E

e ZWES0242W

e ZWES0243W

e ZWES0244E

e ZWES0245E

e ZWES0246E

e ZWES0247W

e ZWES0248W

e ZWES0249E

e ZWES0250E

e ZWES0251I

e ZWES0252]

e ZWES0253I

e ZWES0254W

e ZWES0255E

e ZWES0256I

e ZWES0257W
e ZIS Dynamic Linkage Base plug-in messages

e ZWES0700I

e ZWES0701I

e Z7WESO0702E

e ZWESO0703E

e ZWES0704l

e ZWES0705I

e ZWESO706E

e ZWES0707I

e ZWES0708I

e ZWES0710I

e ZWES0711I

e ZWES0712W

e ZWES0713W

e ZWESO714E
Troubleshooting Zowe Launcher
Troubleshooting Zowe Launcher
® Enable Zowe Launcher Debug Mode
Error Message Codes
Error Message Codes
e Zowe Launcher informational messages

e ZWELOOOTI

e ZWEL0002I

e ZWELO0O03I

e ZWEL00O4!

e ZWELOQO5!

e Zowe Launcher error messages

e ZWELOO30E
e ZWELOO38E
e ZWELOO40E
e ZWELOO47E
e ZWELOO73E
Troubleshooting Zowe CLI
Troubleshooting Zowe CLI
e When there is a problem
e Applicable environments
e Reaching out for support
e Resolving the problem
Gathering information to troubleshoot Zowe CLI
Gathering information to troubleshoot Zowe CLI
® Generating a working environment report
e Finding configuration file properties and locations
¢ Finding configuration file locations
e Finding property values used by a Zowe command
Using individual commands for Zowe CLI troubleshooting
Using individual commands for Zowe CLI troubleshooting

Identify the currently installed CLI version

Identify the currently installed versions of plug-ins
e Environment variables

® Log levels

e CLI daemon mode

e Home directory

Home directory structure
e Location of logs
e Profile configuration
¢ Node,js and npm
® npm configuration
* npm log files
Using cURL to troubleshoot Zowe CLI
Using cURL to troubleshoot Zowe CLI
¢ |Installing cURL
e Understanding cURL commands
e --location
e --request <API method>
e "https://<host>:<port>/<API>"
e --header "X-CSRF-ZOSMF-HEADER;"
® —-insecure
e --user "<|D>:<PASSWORD>"
e Comparing commands
e 7z/OSMF Info API
e Submitting the cURL command:
e Submitting the Zowe CLI command:
e 7z/OSMF Files API
e Submitting the cURL command:

e Submitting the Zowe CLI command:
e 7z/OSMF Jobs API
e Submitting the cURL command:
e Submitting the Zowe CLI command:
z/OSMF troubleshooting
z/OSMF troubleshooting
e Alternative methods
Troubleshooting Zowe CLI credentials
Troubleshooting Zowe CLI credentials
e Secure credentials
e Authentication mechanisms
® PEM certificate files
Known Zowe CLI issues
Known Zowe CLI issues
e Zowe commands fail with secure credential errors
e Chain commands fail in a batch script
e Command not found message displays when issuing npm install commands
e EACCESS error when issing npm install command
¢ |Installation fails on Oracle Linux 6
¢ Node,js commands do not respond as expected
e npm install -g command fails due to an EPERM error
e npm install -g command fails due to npm ERR! Cannot read property 'pause’ of undefined error
e Paths converting in Git Bash
e Sudo syntax required to complete some installations
Raising a CLI issue on GitHub
Raising a CLI issue on GitHub
e Raising a bug report
e Raising an enhancement report
Troubleshooting Zowe CLI plug-ins
Troubleshooting Zowe CLI plug-ins
e When there is a problem
e Error codes
e Reaching out for support
IBM Db2 Database Plug-in troubleshooting
IBM Db2 Database Plug-in troubleshooting
e Timeout error
e Unpacking error
e Downloading the ODBC driver manually
e Fixing a failed extraction
Troubleshooting Zowe Explorer
Troubleshooting Zowe Explorer
e Before reaching out for support
e Connection issues with Zowe Explorer
e Resolving invalid profiles
e Missing write access to VS Code extensions folder
Known Zowe Explorer issues

Known Zowe Explorer issues

e Bidirectional languages
e (lient certificate support
e Data Set creation error
e Opening binary files error
e Theia mainframe connection error
Known Zowe Explorer limitations
Known Zowe Explorer limitations

® Mismatched credentials when using Zowe Explorer and Zowe CLI

e Limitation
e Workaround

Raising a Zowe Explorer issue on GitHub
Raising a Zowe Explorer issue on GitHub
e Raising a bug report
e Submitting a feature request
Troubleshooting Zowe Chat
Troubleshooting Zowe Chat
e Check the chatServer.log
e Raising a Zowe Chat issue on GitHub
e Contacting support via Slack
Troubleshooting Zowe IntelliJ plug-in
Troubleshooting Zowe IntelliJ plug-in
Contributing to Zowe
Contributing to Zowe
e Report bugs and enhancements
e Fixissues
e Send a Pull Request
® Report security issues
e Contribution guidelines
¢ Promote Zowe
e Helpful resources
Code categories
Code categories
® Programming languages
e Component-specific guidelines and tutorials
General code style guidelines
General code style guidelines
® Whitespaces
¢ Naming Conventions

e Functions and methods

e \Variables
Pull requests guidelines
Pull requests guidelines
Documentation Guidelines
Documentation Guidelines
e Contributing to external documentation
e Component Categories

e Server Core

Server Security
Microservices

Zowe Desktop Applications
Web Framework

CLI Plugins

Core CLI Imperative CLI Framework

® Programming Languages

Typescript
Java
C

Ul Guidelines
Ul Guidelines

e Introduction

e (lear

e Consistent

e Smart

Colors
Colors

e Color palette

Light theme
Dark theme

e Color contrast | WCAG AA standards
Typography
Typography
e Typeface

e Font weight

e Body copy

e Line scale

¢ Line-height
e Embed font

e |mport font
e Specify in CSS

Grid
Grid

e 12 column grid

e Gutters

e Columns

* Margins

Iconography

Iconography

Application icon

Application icon

e General rules

e Shape, size, and composition

e Colors and shades

Verify the contrast

Use the Zowe palette

e Layer Shadows
e Use the long shadow for consistency.
Contributing to Zowe Documentation
Contributing to Zowe Documentation
e Before You Get Started
e Getting started checklist
e The Zowe documentation repository
e Sending a GitHub Pull Request
e Opening an issue for Zowe documentation
e Documentation style guide
e Headings and titles
e Use sentence-style capitalization for headings
e For tasks and procedures, use gerunds for headings
e For conceptual and reference information, use noun phrases for headings
e Use headline-style capitalization for only these items
e Technical elements
e Variables
® Message text and prompts to the user
e Code and code examples
e Command names, and names of macros, programs, and utilities that you can type as commands
¢ |Interface controls
e Directory names
¢ File names, file extensions, and script names
e Search or query terms
e (itations that are not links
e Tone
e Use simple present tense rather than future or past tense, as much as possible
e Use simple past tense if past tense is needed
e Use active voice as much as possible
e Using second person such as "you" instead of first person such as "we" and "our"
® End sentences with prepositions selectively
® Avoid anthropomorphism
® Avoid complex sentences that overuse punctuation such as commas and semicolons.
e Release notes
e Word usage and punctuation
® Note headings such as Note, Important, and Tip should be formatted using the lower case and bold format
e Use of "following"
e Use a consistent style for referring to version numbers
¢ Avoid "may"
e Use "issue" when you want to say "run"/"enter" a command
e Use of slashes
e Punctuation in lists
® Punctuation in numbered lists
e Abbreviations
¢ Do not use an abbreviation as a noun unless the sentence makes sense when you substitute the spelled-out form of the
term

e Do not use abbreviations as verbs

¢ Do not use Latin abbreviations
e Spell out the full name and its abbreviation when the word appears for the first time. Use abbreviations in the texts that
follow
e Structure and format
e Word usage
Zowe CLI command reference guide
Zowe CLI command reference guide
Zowe API reference
Zowe API reference
ZWE Server Command Reference
ZWE Server Command Reference
e Using the zwe command
® Accessing zwe help
zwe
zwe
e Sub-commands
e Description
e Examples
e Parameters
e Errors
zwe certificate keyring-jcl clean
zwe certificate keyring-jcl clean
e Description
® Inherited from parent command
e Examples
e Parameters
¢ Inherited from parent command
e Errors
¢ Inherited from parent command
zwe certificate keyring-jcl connect
zwe certificate keyring-jcl connect
e Description
® Inherited from parent command
e Examples
e Parameters
¢ Inherited from parent command
e Errors
¢ Inherited from parent command
zwe certificate keyring-jcl generate
zwe certificate keyring-jcl generate
e Description
® Inherited from parent command
e Examples
e Parameters
¢ Inherited from parent command
e Errors

¢ Inherited from parent command

zwe certificate keyring-jcl import-ds
zwe certificate keyring-jcl import-ds
e Description

¢ Inherited from parent command
e Examples
e Parameters

® Inherited from parent command
e Errors

® Inherited from parent command
zwe certificate keyring-jcl
zwe certificate keyring-jcl
e Sub-commands
e Description

¢ Inherited from parent command
e Examples
® Parameters

® Inherited from parent command
e Errors

¢ Inherited from parent command
zwe certificate pkcs12 create ca
zwe certificate pkcs12 create ca
e Description

¢ Inherited from parent command
e Examples
® Parameters

® Inherited from parent command
e Errors

¢ Inherited from parent command
zwe certificate pkcs12 create cert
zwe certificate pkcs12 create cert
e Description

¢ Inherited from parent command
e Examples
e Parameters

® Inherited from parent command
e Errors

¢ Inherited from parent command
zwe certificate pkcs12 create
zwe certificate pkcs12 create
e Sub-commands

¢ Inherited from parent command
e Examples
e Parameters

¢ Inherited from parent command
e Errors

¢ Inherited from parent command

zwe certificate pkcs12 export

zwe certificate pkcs12 export
e Description

¢ Inherited from parent command
e Examples
e Parameters

¢ Inherited from parent command
e Errors

® Inherited from parent command
zwe certificate pkcs12 import
zwe certificate pkcs12 import
e Description

¢ Inherited from parent command
e Examples
e Parameters

¢ Inherited from parent command
e Errors

® Inherited from parent command
zwe certificate pkcs12 lock
zwe certificate pkcs12 lock
e Description

¢ Inherited from parent command
e Examples
e Parameters

¢ Inherited from parent command
e Errors

® Inherited from parent command
zwe certificate pkcs12 trust-service
zwe certificate pkcs12 trust-service
e Description

¢ Inherited from parent command
e Examples
e Parameters

¢ Inherited from parent command
e Errors

® Inherited from parent command
zwe certificate pkcs12
zwe certificate pkcs12
e Sub-commands
e Description

¢ Inherited from parent command
e Examples
e Parameters

® Inherited from parent command
e Errors

¢ Inherited from parent command
zwe certificate verify-service

zwe certificate verify-service

e Description

¢ Inherited from parent command
e Examples
e Parameters

¢ Inherited from parent command
e Errors

® Inherited from parent command
zwe certificate
zwe certificate
e Sub-commands
e Description
e Examples
e Parameters

¢ Inherited from parent command
e Errors

® Inherited from parent command
zwe components install extract
zwe components install extract
e Description
e Examples
e Parameters

¢ Inherited from parent command
e Errors

® Inherited from parent command
zwe components install process-hook
zwe components install process-hook
e Description
e Examples
e Parameters

¢ Inherited from parent command
e Errors

¢ Inherited from parent command
zwe components install
zwe components install
e Sub-commands
e Description
e Examples
e Parameters only for this command
e Parameters

¢ Inherited from parent command
e Errors

® Inherited from parent command
zwe components disable
zwe components disable
e Description
e Examples

e Parameters

® Inherited from parent command
e Errors

¢ Inherited from parent command
zwe components enable
zwe components enable
e Description
e Examples
e Parameters

® Inherited from parent command
e Errors

¢ Inherited from parent command
zwe components search
zwe components search
e Description
e Examples
® Parameters

® Inherited from parent command
e Errors

¢ Inherited from parent command
zwe components uninstall
zwe components uninstall
e Description
e Examples
e Parameters

® Inherited from parent command
e Errors

¢ Inherited from parent command
zwe components upgrade
zwe components upgrade
e Description
e Examples
e Parameters

® Inherited from parent command
e Errors

® Inherited from parent command
zwe components
zwe components
e Sub-commands
e Examples
e Parameters

¢ Inherited from parent command
e Errors

® Inherited from parent command
zwe config get
zwe config get
e Description

e Examples

e Parameters

¢ Inherited from parent command
e Errors

¢ Inherited from parent command
zwe config validate
zwe config validate
e Description
e Examples
e Parameters

® Inherited from parent command
e Errors

¢ Inherited from parent command
zwe config
zwe config
e Sub-commands
e Parameters

® Inherited from parent command
e Errors

¢ Inherited from parent command
zwe init apfauth
zwe init apfauth
e Description
e Examples
e Parameters

® Inherited from parent command
e Errors

® Inherited from parent command
zwe init certificate
zwe init certificate
e Description
e Examples
e Parameters

¢ Inherited from parent command
e Errors

® Inherited from parent command
zwe init mvs
zwe init mvs
e Description
e Examples
e Parameters

¢ Inherited from parent command
e Errors

® Inherited from parent command
zwe init security
zwe init security
e Description

e Examples

e Parameters

¢ Inherited from parent command
e Errors

¢ Inherited from parent command
zwe init stc
zwe init stc
e Description
e Examples
e Parameters

¢ Inherited from parent command
e Errors

¢ Inherited from parent command
zwe init vsam
zwe init vsam
e Description
e Examples
e Parameters

® Inherited from parent command
e Errors

¢ Inherited from parent command
zwe init
zwe init
e Sub-commands
e Description
e Examples
e Parameters

¢ Inherited from parent command
e Errors

¢ Inherited from parent command
zwe internal config get
zwe internal config get
e Description

® Inherited from parent command
e Examples
e Parameters

¢ Inherited from parent command
e Errors

¢ Inherited from parent command
zwe internal config set
zwe internal config set
e Description

® Inherited from parent command
e Examples
e Parameters

¢ Inherited from parent command
e Errors

¢ Inherited from parent command

zwe internal config
zwe internal config
e Sub-commands

¢ Inherited from parent command
e Examples
e Parameters

¢ Inherited from parent command
e Errors

® Inherited from parent command
zwe internal container cleanup
zwe internal container cleanup
e Description

¢ Inherited from parent command
e Parameters

¢ Inherited from parent command
e Errors

® Inherited from parent command
zwe internal container init
zwe internal container init
e Description

¢ Inherited from parent command
e Parameters

¢ Inherited from parent command
e Errors

® Inherited from parent command
zwe internal container prestop
zwe internal container prestop
e Description

¢ Inherited from parent command
e Parameters

¢ Inherited from parent command
e Errors

® Inherited from parent command
zwe internal container
zwe internal container
e Sub-commands
e Description

¢ Inherited from parent command
e Parameters

¢ Inherited from parent command
e Errors

e Inherited from parent command
zwe internal start component
zwe internal start component

¢ Inherited from parent command
e Examples

e Parameters

® Inherited from parent command
e Errors

¢ Inherited from parent command
zwe internal start prepare
zwe internal start prepare

¢ Inherited from parent command
e Examples
e Parameters

® Inherited from parent command
e Errors

® Inherited from parent command
zwe internal start
zwe internal start
e Sub-commands

¢ Inherited from parent command
e Examples
® Parameters

® Inherited from parent command
e Errors

¢ Inherited from parent command
zwe internal get-launch-components
zwe internal get-launch-components
e Description

¢ Inherited from parent command
e Examples
® Parameters

¢ Inherited from parent command
e Errors

¢ Inherited from parent command
zwe internal
zwe internal
e Sub-commands
e Description
e Examples
e Parameters

¢ Inherited from parent command
e Errors

¢ Inherited from parent command
zwe migrate for kubernetes
zwe migrate for kubernetes
e Description
e Parameters

® Inherited from parent command
e Errors

¢ Inherited from parent command
zwe migrate for

zwe migrate for

e Sub-commands
e Parameters

¢ Inherited from parent command
e Errors

¢ Inherited from parent command
zwe migrate
zwe migrate
e Sub-commands
e Parameters

¢ Inherited from parent command
e Errors

¢ Inherited from parent command
zwe sample sub deep
zwe sample sub deep
e Description

® Inherited from parent command
e Examples
e Parameters

¢ Inherited from parent command
e Errors

¢ Inherited from parent command
zwe sample sub second
zwe sample sub second
e Description

® Inherited from parent command
e Examples
e Parameters

¢ Inherited from parent command
e Errors

¢ Inherited from parent command
zwe sample sub
zwe sample sub
e Sub-commands
e Description

¢ Inherited from parent command
e Examples
e Parameters

¢ Inherited from parent command
e Errors

¢ Inherited from parent command
zwe sample test
zwe sample test
e Description

¢ Inherited from parent command
e Examples
e Parameters

¢ Inherited from parent command

e Errors

¢ Inherited from parent command
zwe sample
zwe sample
e Sub-commands
e Description
e Examples
® Parameters

® Inherited from parent command
e Errors

¢ Inherited from parent command
zwe support verify-fingerprints
zwe support verify-fingerprints
e Parameters

¢ Inherited from parent command
e Errors

® Inherited from parent command
zwe support
zwe support
e Sub-commands
e Description
e Parameters

¢ Inherited from parent command
e Errors

® Inherited from parent command
zwe diagnose
zwe diagnose
e Description
e Examples
e Parameters

¢ Inherited from parent command
e Errors

® Inherited from parent command
zwe install
zwe install
e Description
e Examples
e Parameters

¢ Inherited from parent command
e Errors

¢ Inherited from parent command
zwe start
zwe start
e Description
e Examples
e Parameters

¢ Inherited from parent command

e Errors

® Inherited from parent command
zwe stop
zwe stop
e Description
e Examples
e Parameters

e Inherited from parent command
® Errors

® Inherited from parent command
Zwe version
Zwe version
e Description
e Examples
e Parameters

¢ Inherited from parent command
® Errors

® Inherited from parent command
Zowe Chat command reference overview
Zowe Chat command reference overview
zos commands
zos commands
e Resources
zos job
zos job
e Usage
e Action

e Positional Arguments

e Options
e Examples
zos job list
zos job list

e Usage

e Object

zos job list status

zos job list status

e Usage

e Positional Arguments
e Options

e Examples

zos dataset

zos dataset

e Usage

e Action

e Positional Arguments
e Options

e Examples

zos dataset list

zos dataset list

e Usage

e Object

zos dataset list status
zos dataset list status

e Usage

e Positional Arguments
e Options

e Examples

zos dataset list member
zos dataset list member
e Usage

e Positional Arguments

e Options
e Examples
zos file

zos file

e Usage

e Action

e Positional Argument

e Option

e Examples
zos file list
zos file list

e Usage

e Objects

zos file list status

zos file list status

e Usage

e Positional Arguments
e Options

e Examples

zos file list mounts

zos file list mounts

e Usage

e Positional Arguments
e Options

e Examples

zos command

zos command

e Usage

e Action

e Positional Arguments
e Options

e Examples

zos command issue

zos command issue

e Usage

e Object

zos command issue console
zos command issue console
e Usage

e Positional Arguments

e Options
e Examples
zos help

zos help

e Usage

e Action

e Positional Arguments
e Examples
zos help list
zos help list
e Usage
e Object
zos help list command
zos help list command
e Usage
e Positional Arguments
e Examples
Zowe YAML server configuration file reference
Zowe YAML server configuration file reference
e High-level overview of YAML configuration file
e Extract sharable configuration out of zowe.yaml
e (reating portable references
¢ Configuration override
® YAML configurations - certificate
e YAML configurations - zowe
e Directories
e Zowe Job
e Domain and port to access Zowe
e Extra environment variables
e Certificate
e Launcher and launch scripts
e Setup
e YAML configurations - java
® YAML configurations - node
® YAML configurations - zOSMF
e YAML configurations - components
e Configure component gateway
e Configure component discovery
¢ Configure component api-catalog

e Configure component caching-service

Configure component app-server
Configure component zss
Configure component jobs-api
Configure component files-api

Configure external extension

e YAML configurations - halnstances

e Auto-generated environment variables
e Troubleshooting your YAML with the Red Hat VS Code extension

Server component manifest file reference

Server component manifest file reference
Bill of Materials
Bill of Materials

Version: v2.16.x LTS

Zowe overview

Zowe™ is an open source software which provides both an extensible framework, and a set of tools that allow mainframe
development and operation teams to securely manage, develop, and automate resources and services on z/OS family mainframes.
Zowe offers modern interfaces to interact with z/OS and allows users to interact with the mainframe system in a way that is similar to
what they experience on cloud platforms today. Users can work with these interfaces as delivered or through plug-ins and extensions
created by customers or third-party vendors. All members of the IBM Z platform community, including Independent Software Vendors
(ISVs), System Integrators, and z/OS consumers, benefit from the modern and open approach to mainframe computing delivered by

Zowe.

Zowe is a member of the Open Mainframe Project governed by Linux Foundation™.

Zowe demo video

Watch this video to see a quick demo of Zowe.

Introduction to Zowe (Feb. 26, 2021)

Download the deck for this video | Download the script

Component overview
Zowe consists of the following components:

e Zowe Launcher
e AP| Mediation Layer

e Zowe Application Framework

https://www.youtube.com/embed/NX20ZMRoTtk
https://www.youtube.com/watch?v=7XpOjREP8JU
https://docs.zowe.org/assets/files/Zowe_introduction_video_deck-fbb2a23bfe28dd10f5a003a305350c92.pptx
https://docs.zowe.org/assets/files/Zowe_introduction_video_script-cd119a2662821b55ad9bb5108f40f261.txt

Zowe CLI

Zowe Explorer

Zowe Client Software Development Kits SDKs

ZEBRA (Zowe Embedded Browser for RMF/SMF and APIs) - Incubator

Zowe Launcher

The Zowe Launcher makes it possible to launch Zowe z/OS server components in a high availability configuration, and performs the

following operations:

e Start all Zowe server components using the START (or s) operator command.
e Stop Zowe server components using the sTop (or p) operator command.

e Stop and start specific server components without restarting the entire Zowe instance using MODIFY (or F) operator command.

APl Mediation Layer

The APl Mediation Layer provides a single point of access for APIs of mainframe services, and provides a Single Sign On (SSO)
capability for mainframe users.

The APl Mediation Layer (API ML) facilitates secure communication between loosely coupled clients and services through a variety of
API types, such as REST, GraphQL or Web-Socket. API ML consists of these core components: the APl Gateway, the Discovery Service,
the API Catalog, and the Caching service:

The API Gateway provides secure routing of APl requests from clients to registered API services.
e The Discovery Service allows dynamic registration of microservices and enables their discoverability and status updates.

e The API Catalog provides a user-friendly interface to view and try out all registered services, read their associated APIs
documentation in OpenAPl/Swagger format.

e The APl ML Caching Service allows components to store, search and retrieve their state. The Caching service can be configured to
store the cached data in-memory or using Redis, or VSAM storage.

Core Zowe also provides out of the box services for working with MVS Data Sets, JES, as well as working with z/ZOSMF REST APIs.
Note: The MVS datasets and JES services are deprecated and will not be available in Zowe V3.

The API Mediation Layer offers enterprise, cloud-like features such as high-availability, scalability, dynamic API discovery, consistent

security, a single sign-on experience, and APl documentation.

'd N

¥ Learn more

Key features

e Consistent Access: API routing and standardization of API service URLs through the Gateway component provides users with

a consistent way to access mainframe APIs at a predefined address.
e Dynamic Discovery: The Discovery Service automatically determines the location and status of API services.
e High-Availability: APl Mediation Layer is designed with high-availability of services and scalability in mind.

e Caching Service: This feature is designed for Zowe components in a high availability configuration, and supports high

availability of all components within Zowe. As such, components can remain stateless whereby the state of the component is

https://docs.zowe.org/stable/getting-started/user-guide/api-mediation-sso

offloaded to a location accessible by all instances of the service, including those which just started.

e Redundancy and Scalability: API service throughput is easily increased by starting multiple API service instances without the

need to change configuration.

e Presentation of Services: The API Catalog component provides easy access to discovered API services and their associated

documentation in a user-friendly manner. Access to the contents of the API Catalog is controlled through a z/OS security

facility.

e Encrypted Communication: APl ML facilitates secure and trusted communication across both internal components and

discovered API services.

API Mediation Layer structural architecture

The following diagram illustrates the single point of access through the Gateway, and the interactions between APl ML

components and services:

User accesses API
zervices via API
— client(e.g. Zowe
i) CLI/Explorer,

,-'3—3-\ Postman etc.)
[APl A

' User '
L

Reqgisters/Sends
heartbeats

API Client

AP client calls API
zervices via API
Gateway

h
F Y

Discovery Service

Regisfers &
Sends heartbeats

AFI Catalog

Catalog feiches the registry.
Client requests are routed to
Catalog via Gateway

F 3

Registers &
Sends heartbeats

Clients can call Z/0S APls|
even when running off 210

v

API Gateway

Gateway can store
state in Cache

Re

ZI0S low level API

wrapper (Z55 or
other)

Components

The API Layer consists of the following key components:

API Gateway

nuests are routed to
via the Gateway

Authenticate/
Validate User identity

Authenfication
& Authgrization

User/LClient i
|
|

L4 :

Authentication &

| Authorization Service

Caching Service

Services can store
state in Cache

_______________________________________+

Services that comprise the APl ML service ecosystem are located behind a gateway (reverse proxy). All end users and API client

applications interact through the Gateway. Each service is assigned a unique service ID that is used in the access URL. Based on

the service ID, the Gateway forwards incoming API requests to the appropriate service. Multiple Gateway instances can be started
to achieve high-availability. The Gateway access URL remains unchanged. The Gateway is built using Netflix Zuul and Spring Boot
technologies.

Discovery Service

The Discovery Service is the central repository of active services in the APl ML ecosystem. The Discovery Service continuously
collects and aggregates service information and serves as a repository of active services. When a service is started, it sends its
metadata, such as the original URL, assigned serviceld, and status information to the Discovery Service. Back-end microservices
register with this service either directly or by using a Eureka client. Multiple enablers are available to help with service on-
boarding of various application architectures including plain Java applications and Java applications that use the Spring Boot

framework. The Discovery Service is built on Eureka and Spring Boot technology.
Discovery Service TLS/SSL

HTTPS protocol can be enabled during API ML configuration and is highly recommended. Beyond encrypting communication, the
HTTPS configuration for the Discovery Service enables heightened security for service registration. Without HTTPS, services
provide a username and password to register in the APl ML ecosystem. When using HTTPS, only trusted services that provide

HTTPS certificates signed by a trusted certificate authority can be registered.
API Catalog

The API Catalog is the catalog of published API services and their associated documentation. The Catalog provides both the REST
APIs and a web user interface (Ul) to access them. The web Ul follows the industry standard Swagger Ul component to visualize
APl documentation in OpenAPI JSON format for each service. A service can be implemented by one or more service instances,
which provide exactly the same service for high-availability or scalability.

Catalog Security

Access to the API Catalog can be protected with an Enterprise z/OS Security Manager such as IBM RACF, ACF2, or Top Secret.
Only users who provide proper mainframe credentials can access the Catalog. Client authentication is implemented through the
z/OSMF API.

Caching Service

An APl is provided in high-availability mode which offers the possibility to store, retrieve, and delete data associated with keys.
The service can only be used by internal Zowe services and is not exposed to the internet.

Metrics Service (Technical Preview)

The Metrics Service provides a web user interface to visualize requests to API Mediation Layer services. HTTP metrics such as
number of requests and error rates are displayed for each APl Mediation Layer service. This service is currently in technical
preview and is not ready for production.

Onboarding APIs

Essential to the APl Mediation Layer ecosystem is the API services that expose their useful APIs. Use the following topics to

discover more about adding new APIs to the APl Mediation Layer and using the API Catalog:

e Onboarding Overview

e Onboard an existing Spring Boot REST API service using Zowe AP| Mediation Layer

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://docs.zowe.org/stable/extend/extend-apiml/onboard-spring-boot-enabler

e Onboard an existing Node.js REST API service using Zowe APl Mediation Layer

e Using API Mediation Layer

To learn more about the architecture of Zowe, see Zowe architecture.

Zowe Application Framework

A web user interface (Ul) that provides a virtual desktop containing a number of apps allowing access to z/OS function. Base Zowe
includes apps for traditional access such as a 3270 terminal and a VT Terminal, as well as an editor and explorers for working with JES,

MVS Data Sets and Unix System Services.

.

¥ Learn more

The Zowe Application Framework modernizes and simplifies working on the mainframe. With the Zowe Application Framework,
you can create applications to suit your specific needs. The Zowe Application Framework contains a web Ul that has the following
features:

e The web Ul works with the underlying REST APIs for data, jobs, and subsystem, but presents the information in a full screen
mode as compared to the command line interface.

e The web Ul makes use of leading-edge web presentation technology and is also extensible through web Ul plug-ins to
capture and present a wide variety of information.

e The web Ul facilitates common z/OS developer or system programmer tasks by providing an editor for common text-based

files like REXX or JCL along with general purpose data set actions for both Unix System Services (USS) and Partitioned Data
Sets (PDS) plus Job Entry System (JES) logs.

The Zowe Application Framework consists of the following components:
e Zowe Desktop

The desktop, accessed through a browser. The desktop contains a number of applications, including a TN3270 emulator for
traditional Telnet or TLS terminal access to z/OS, a VT Terminal for SSH commands, as well as rich web GUI applications
including a JES Explorer for working with jobs and spool output, a File Editor for working with USS directories and files and
MVS data sets and members. The Zowe desktop is extensible and allows vendors to provide their own applications to run

within the desktop. See Extending the Zowe Desktop. The following screen capture of a Zowe desktop shows some of its
composition as well as the TN3270 app, the JES Explorer, and the File Editor open and in use.

https://docs.zowe.org/stable/extend/extend-apiml/onboard-nodejs-enabler
https://docs.zowe.org/stable/user-guide/api-mediation/using-api-mediation-layer
https://docs.zowe.org/stable/getting-started/zowe-architecture
https://docs.zowe.org/stable/extend/extend-desktop/mvd-extendingzlux

COPYJOB - Editor

File Explorer x - o TN3270 - localhost:992

Fila Langua

4 Mod 7 (2ax80)

4 WINCHJL* - =H, =(1,1) International EBCDIC 1047

& WINCH..JCL) 18 Rl 5 M BUSINESS ONLY
W BEER ; :
I BOBBY
[CAT
[COFFEE
] copvJoe]
B FISH
B FRIDAY
[FROM
W NEW1

8 WINCHJ.JCL.DEMO RVICE A

TN 3270 emulator app

rverCont Lo/ serve
il.j5:280) Re:

¥ s Explarer

L}

MVS Explorer

Available
Apps

o réontigsserve:
11.15:280) Re:
11031280} Re
i1.]5:280) Re

JES Explorer

o o

[amd API Catalog

D Fa
.800 Registering App (ID=org. rows.explorer—jes) with App St
1882 App org. zowe.explorer-1es installed to /u/stevenh/18SE

905390/ e is /usr/\pp/IBM/cn

nstance—dir/logs/ins!
a

Logout / Preferences

0O wuime

e Zowe Application Server

The Zowe Application Server runs the Zowe Application Framework. It consists of the Node.js server plus the Express.js as a
webservices framework, and the proxy applications that communicate with the z/OS services and components.

ZSS Server

The ZSS Server provides secure REST services to support the Zowe Application Server. For services that need to run as APF
authorized code, Zowe uses an angel process that the ZSS Server calls using cross memory communication. During

installation and configuration of Zowe, you will see the steps needed to configure and launch the cross memory server.

Application plug-ins

Several application-type plug-ins are provided. For more information, see Using the Zowe Application Framework application
plug-ins.

Zowe CLI

Zowe CLI is a command-line interface that lets you interact with the mainframe in a familiar, off-platform format. Zowe CLI helps to

increase overall productivity, reduce the learning curve for developing mainframe applications, and exploit the ease-of-use of off-

platform tools. Zowe CLI lets you use common tools such as Integrated Development Environments (IDEs), shell commands, bash

scripts, and build tools for mainframe development. Though its ecosystem of plug-ins, you can automate actions on systems such as

IBM Db2, IBM CICS, and more. It provides a set of utilities and services for users that want to become efficient in supporting and

building z/OS applications quickly.

¥ Learn more

Zowe CLI provides the following benefits:

https://docs.zowe.org/stable/user-guide/mvd-using#zowe-desktop-application-plug-ins

e Enables and encourages developers with limited z/OS expertise to build, modify, and debug z/OS applications.

e Fosters the development of new and innovative tools from a computer that can interact with z/OS. Some Zowe extensions

are powered by Zowe CLI, for example the Visual Studio Code Extension for Zowe.

e Ensure that business critical applications running on z/OS can be maintained and supported by existing and generally

available software development resources.

e Provides a more streamlined way to build software that integrates with z/OS.
Note: For information about software requirements, installing, and upgrading Zowe CLI, see Installing Zowe.

Zowe CLI capabilities

With Zowe CLI, you can interact with z/OS remotely in the following ways:

¢ Interact with mainframe files: Create, edit, download, and upload mainframe files (data sets) directly from Zowe CLI.

e Submit jobs: Submit JCL from data sets or local storage, monitor the status, and view and download the output

automatically.
e Issue TSO and z/0OS console commands: Issue TSO and console commands to the mainframe directly from Zowe CLI.
¢ Integrate z/OS actions into scripts: Build local scripts that accomplish both mainframe and local tasks.

¢ Produce responses as JSON documents: Return data in JSON format on request for consumption in other programming

languages.

For detailed information about the available functionality in Zowe CLI, see Zowe CLI Command Groups.

For information about extending the functionality of Zowe CLI by installing plug-ins, see Extending Zowe CLI.

More Information:

e System requirements for Zowe CLI

e |nstalling Zowe CLI

Zowe Explorer

Zowe Explorer is a Visual Studio Code extension that modernizes the way developers and system administrators interact with z/OS
mainframes. Zowe Explorer lets you interact with data sets, USS files, and jobs that are stored on z/OS. The extension complements
your Zowe CLI experience and lets you use authentication services like APl Mediation Layer. The extension provides the following

benefits:

e Enables you to create, modify, rename, copy, and upload data sets directly to a z/OS mainframe.
e Enables you to create, modify, rename, and upload USS files directly to a z/OS mainframe.

e Provides a more streamlined way to access data sets, uss files, and jobs.

e |etting you create, edit, and delete Zowe CLI zosmf compatible profiles.

e |ets you use the Secure Credential Store plug-in to store your credentials securely in the settings.

e |ets you leverage the APl Mediation Layer token-based authentication to access z/ZOSMF.

For more information, see Information roadmap for Zowe Explorer.

Zowe Client Software Development Kits (SDKs)

https://docs.zowe.org/stable/user-guide/ze-install
https://docs.zowe.org/stable/user-guide/installandconfig
https://docs.zowe.org/stable/user-guide/cli-using-understanding-core-command-groups
https://docs.zowe.org/stable/user-guide/cli-extending
https://docs.zowe.org/stable/user-guide/systemrequirements-cli
https://docs.zowe.org/stable/user-guide/cli-installcli
https://docs.zowe.org/stable/getting-started/user-roadmap-zowe-explorer

The Zowe Client SDKs consist of programmatic APIs that you can use to build client applications or scripts that interact with z/OS. The
following SDKs are available:

e Zowe Node,js Client SDK
e Zowe Python Client SDK

For more information, see Using the Zowe SDKs.

Zowe Chat (Technical Preview)

Zowe Chat is a chatbot that aims to enable a ChatOps collaboration model including z/OS resources and tools. Zowe Chat enables
you to interact with the mainframe from chat clients such as Slack, Microsoft Teams, and Mattermost. Zowe Chat helps to increase

your productivity by eliminating or minimizing the context switching between different tools and user interfaces.

r

¥ Learn more

Zowe Chat key features

¢ Manage z/0S resource in chat tool channels Check your z/OS job, data set, and USS files status directly in chat tool
channels. You can also issue z/OS console commands directly in the chat tool. You can drill down on a specific job, data set,

error code, and so on to get more details through button or drop-down menu that Zowe Chat provides.

e Execute Zowe CLI commands in chat tool channels

You can also issue Zowe CLI commands to perform operations such as help and z/OS resource management including z/OS
job, data set, USS file, error code, and console command. Theoretically, most of Zowe CLI commands are supported as long
as it is executable with single-submit.

¢ Extensibility

Zowe Chat is extensible via plug-ins. You can extend Zowe Chat by developing plug-ins and contributing code to the base

Zowe Chat or existing plug-ins.
e Security:

Zowe Chat makes use of z/OS SAF calls and supports the three main security management products on z/OS (RACF, Top
Secret, ACF2). You can log in to the chat client via enterprise standards, including two factor authentication if required. The
first time you issue a command to the Zowe Chat installed in the chat workspace, it prompts you to log in with the
mainframe ID using a one-time URL. Once authenticated against the mainframe security, Zowe Chat securely caches in
memory the relationship between your Chat tool ID and the mainframe ID. Zowe Chat's Security Facility will generate
credentials for downstream API requests.

¢ Display alerts:

Allows you to send alert or event to a channel in the chat tool in use. An event data model enables Zowe Chat extenders to

send alerts to a channel in the chat through Zowe Chat.

Read the following blogs to learn more about Zowe Chat:

e Zowe Gets Chatty

https://docs.zowe.org/stable/user-guide/sdks-using
https://medium.com/zowe/zowe-gets-chatty-842e3b548902

e Zowe Chat can make you more productive: user scenarios

Zowe Chat architecture

Zowe Chat is based on the Common Bot framework, which is required for the chat platform Slack, Mattermost, and Microsoft

Teams.

@ [S

)
Chat Tools
MatterMost Slack

Common Bot Framework

N
Chat Bot Interface / SDK [Listener] { Router J Messaging App

!

Zowe Chat

core (chat)

Zowe Chat Functions) Natural
Security Plug-ins Language

g: g: :DC.> Process

208 cliemd Extension Plugins

A
v v v v

Microservice Zowe Client SDK Zowe CLI commands on Zowe Chat Server

| AML |
Fil JES REST API
Zowe Interface / SDK Extension Server -

R o] [[|

Core CLI Core Extensions Extension
Plugins

cu
extension

Resource

\.

For more information, see Installing Zowe Chat and Using Zowe Chat.

ZEBRA (Zowe Embedded Browser for RMF/SMF and APIs) - Incubator

ZEBRA Provides re-usable and industry compliant JSON formatted RMF/SMF data records, so that many other ISV SW and users can

exploit them using open-source SW for many ways.

For more information, see the ZEBRA documentation.

Zowe IntelliJ Plug-in

Zowe Intelli) plug-in for Intellij-based IDEs is a smart and interactive mainframe code editing tool that allows you to browse, edit, and
create data on z/OS via z/OSMF REST API.

Zowe Intelli) plug-in helps you to:

Start working with z/OS easily with no complex configurations.

Organize datasets on z/OS, files on USS into working sets.

Allocate datasets, create members, files and directories with different permissions.

Perform operations like renaming, copying and moving data in a modern way.

https://medium.com/zowe/zowe-chat-can-make-you-more-productive-user-scenarios-f52a9985dd50
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_install_overview
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_use_interact_methods
https://github.com/zowe/zebra/tree/main/Documentation

Edit datasets, files and members. Smart auto-save keeps your content both in the editor and on the mainframe in-sync.

Create multiple connections to different z/OS systems.

Perform all available operations with jobs.

Highlight all IntelliJ supported languages automatically and recognize them once opened from the mainframe.

For more information, see Using Zowe IntelliJ plug-in.

Zowe Bill of Materials

For information about the Zowe Bill of Materials (BOM), see this link to the appendix.

https://docs.zowe.org/stable/user-guide/intellij-using
https://docs.zowe.org/stable/appendix/bill-of-materials

Version: v2.16.x LTS

Zowe architecture

Zowe™ is a collection of components that together form a framework that makes Z-based functionality accessible across an

organization. Zowe functionality includes exposing Z-based components, such as zZOSMF, as REST APIs. The Zowe framework

provides an environment where other components can be included and exposed to a broader non-Z based audience.

The following diagram illustrates the high-level Zowe architecture.

Core desktop apps

Extension Plugins

File Editor 3270 Terminal JES Explorer

1P Explorer

HTML

iFrame

Zowe Desktop running in web browser

A

Zowe
Explorer

VS

Code ﬂ

Extension

Plugins

CLI
extension

A

¢ Core CLI

Zowe CLI running in

Core Extensions

T-

Running under USS

4

7554

A
desktop she{
|
|

AP| Gateway

(optional

nee]:{ed for SSO/MFA)

l 7556

7Y
7555 I 7553, 75521 7551 I I T ‘
Caching API AP| Metrics
Service Discovery Catalog Service ‘

8547 | | 8545 ‘
Appserver| File File v | [+ JES
Editor API API
Y
eminl 3270 (Optional, off by default) ‘
7557 A
m< f ‘
22 23, nnnn raes L1 y Y
“SSH| [Temmer ZOSNIE IMS Ops | [cics ||t o
Cross |Memory LETq e TT REST API Z o DB2:
i Extension Server - API I Y [cIRN I Sbsten
ZIS. Java ZW@)I_‘kﬂ_O_W'S_ DTSR — ¢ -
; -TSQ/MVS/Console.- | | jms-
Node s Files, USS,JES | | Conedt
metal G/ C

The diagram shows the default port numbers that are used by Zowe. These are dependent on each instance of Zowe and are held in

the Zowe YAML configuration file.

Zowe components can be categorized by location: server or client. While the client is always an end-user tool such as a PC, browser, or

mobile device, the server components can be further categorized by what machine they run on.

Zowe server components can be installed and run entirely on z/OS, but a subset of the components can alternatively run on Linux or

z/Linux via Docker. While on z/OS, many of these components run under UNIX System Services (USS). The components that do not

run under USS must remain on z/OS when using Docker in order to provide connectivity to the mainframe.

Zowe architecture with high availability enablement on Sysplex

The following diagram illustrates the difference in locations of Zowe components when deploying Zowe into a Sysplex with high

availability enabled as opposed to running all components on a single z/OS system.

z/OS LPAR A

7554 4 port sharing
Sysplex le

" Distributor N

z/OS LPAR B

(Can be on different sysplex)

Running under USS 7554 Running under USS 7554
API| Gateway AP| Gateway
7555
Caching |
Service | 7555 |

Caching
Service

v

API
Discovery

,l API
. Catalog 4
L‘PI 7552

Apps...

- A

Apps... Catalog |- ZLUX File
ZLUX File Editor
Editor v

VT ,—l Terminal 3270
Terminal 3270

. zssServer
- 1
zssServer i
1
L .
1 1
1 1
\

v
PN ZWESISO1 Z18.

Zowe has a high availability feature built in. To enable this feature, you can define the haInstances section in your YAML

configuration file.

The preceding diagram shows that zwesLSTC has started two Zowe instances running on two separate LPARs that can be on the same

or different sysplexes.

e Sysplex distributor port sharing enables the APl Gateway 7554 ports to be shared so that incoming requests can be routed to
either the Gateway on LPAR A or LPAR B.

e The discovery servers on each LPAR communicate with each other and share their registered instances, which allows the API
Gateway on LPAR A to dispatch APIs to components either on its own LPAR, or alternatively to components on LPAR B. As
indicated in the diagram, each component has two input lines: one from the APl Gateway on its own LPAR and one from the
Gateway on the other LPAR. When one of the LPARs goes down, the other LPAR remains operating within the Sysplex, thereby
providing high availability to clients that connect through the shared port irrespective of which Zowe instance is serving the API
requests.

The zowe.yaml file can be configured to start Zowe instances on more than two LPARS, and also to start more than one Zowe

instance on a single LPAR, thereby providing a grid cluster of Zowe components that can meet availability and scalability
requirements.

The configuration entries of each LPAR in the zowe.yaml file control which components are started. This configuration mechanism

makes it possible to start just the desktop and APl Mediation Layer on the first LPAR, and start all of the Zowe components on the
second LPAR. Because the desktop on the first LPAR is available to the Gateway of the second LPAR, all desktop traffic is routed there.

The caching services for each Zowe instance, whether on the same LPAR, or distributed across the sysplex, are connected to each
other by the same shared VSAM data set. This arrangement allows state sharing so that each instance behaves similarly to the user

irrespective of where their request is routed.

For simplification of the preceding diagram, the Jobs and Files API servers are not shown as being started. If the user defines Jobs and

Files API servers to be started in the zowe.yaml configuration file, these servers behave the same as the servers illustrated. In other
words, these services register to their API discovery server which then communicates with other discovery servers on other Zowe

instances on either the same or other LPARs. The API traffic received by any APl Gateway on any Zowe instance is routed to any of the

Jobs or Files APl components that are available.

To learn more about Zowe with high availability enablement, see Configuring Sysplex for high availability.

Zowe architecture when running in Kubernetes cluster

The following diagram illustrates the difference in locations of Zowe components when deploying Zowe into a Kubernetes cluster as

opposed to running all components on a single z/OS system.

Zowe VS n
Explorer - Code

+ Core CLI] Core Extensions

A * A A

Core desktop apps Extension Plugins

—

Extension
Plugins

CLI
extension

File Editor 3270 Terminal JES Explorer P Explorer iFrame
L Nesesok
Zowe Desktop running in web browser ‘ Zowe CLI running in desktop shell
A
Ingress. > ‘
Running in a Kubemetes Cluster | 7554 EeptEngeaE I
= G |
[} D f ‘
§ ! AP| Gateway (optional needed for SSO/MFA)
E |
2 |
H pod | | ‘
B L A A A A A]
e 7555 7553 . _551,_1 _____ .
= . . €3 kubernetes
= Caching API il APL | Metrics | Namespace: zowe
= Service Discovery i Catalog | i|| Service |i =S
o SR o 7556 S
; ServiceAccolint
8547 8545
zowe-config zowe-certificates-cm
zowe-launch-scripts API API CoTiente
initContainers » zowe-certificates-secret
(Optional, off by default)
Secret
zssServer < nAnn 7443 . v
Runnin LunderUSS
d REST API 145 Oz
Cross | Memory Extension Server API
EEEE - Java Wordws |
v Node.js -TSQ/MVS/ Console .| | s
ZWESISO1 Files, USS, JES: -+ |Connect -
metal C/C

When deploying other server components into container orchestration software like Kubernetes, Zowe follows standard Kubernetes

practices. The cluster can be monitored and managed with common Kubernetes administration methods.

e All Zowe workloads run on a dedicated namespace (zowe by default) to distinguish from other workloads in same Kubernetes

cluster.
e Zowe has its own ServiceAccount to help with managing permissions.
e Server components use similar zowe.yaml on z/OS, which are stored in ConfigMap and Secret, to configure and start.
e Server components can be configured by using the same certificates used on z/OS components.
e Zowe claims its own persistent Volume to share files across components.

e Fach server component runs in separated containers.

e Components may register themselves to Discovery with their own pod name within the cluster.

https://docs.zowe.org/stable/user-guide/configure-sysplex

e Zowe workloads use the zowe-launch-scripts initContainers step to prepare required runtime directories.

e Only necessary components ports are exposed outside of Kubernetes with service.

App Server

The App Server is a portable, extensible HTTPS server written in node.js. It can be extended with expressjs routers to add REST or

Websocket APIs. This server is responsible for the Zowe Application Framework, including the Desktop which is described later in this

page.

TN3270 - localhost:992

JES Explorer

3270 emulator X - O JES Explorer
HIT ENTER FO !

\] T STATUS REEN 1138 1L3¢
IBM INTERNAL SYSTEM BE USED FOR IBM BUSINESS ONLY

STCO6101-STDOUT X
WVS3BTS0

MVS3BNV

wsgi‘w
MVS2VAMP

B8) IWEDORS1T /u,
88) ZWEDBRS1T /u.
F 1

4+ WINCHJ.™

8 WINCH. BORK STWEAUTH
N | 8 WINCH. BORK SZWESAMP
R LOGOFF WOF| e wiNcHJ.COBOL
o & WINCHJ.JCL 12 2881 webees11 su
[ands API Catalog B BEER
I BOBBY
Editor I CAT
I COFFEE

|] COPYJOB
o
L

TYPE SERVICE A

Refresh Applications &

IFrame Sample B FisH

& FRIDAY

JES Explorer

I FROM
Available Apps B JM2020 Logout and
a MVS Explorer R =Wy
P . B TEST User preferences
oarch Pinned apps W MATER \

- [_{} 0SSO .0

When the API Gateway is running, this server and the Desktop are accessible at https://<ZOWE_HOST_IP>:7554/z1lux/ui/v1/.When
the API Catalog is running, this server's APl documentation is accessible at the API Catalog tile Zowe Application Server, which can
be viewed at https://<ZOWE_HOST_IP>:7554/apicatalog/ui/vl/#/tile/z1lux/z1lux. When running on z/OS, this server uses the

jobname suffix of DS1.

ZSS

Zowe System Services (ZSS) is a z/OS native, extensible HTTPS server which allows you to empower web programs with z/OS
functionality due to ZSS' conveniences for writing REST and Websocket APIs around z/OS system calls. The Zowe desktop delegates a
number of its services to the ZSS server.

When the API Gateway is running, this server is accessible at https://<ZOWE_HOST_IP>:7554/zss/api/v1l. When the API Catalog is
running, this server's APl documentation is accessible at the API Catalog tile zowe System Services (zSS) which can be viewed at
https://<ZOWE_HOST_IP>:7554/apicatalog/ui/vi/#/tile/zss/zss When running on z/OS, the server uses the jobname suffix of
SZ.

ZIS

ZIS is a z/OS native, authorized cross-memory server that allows a secure and convenient way for Zowe programs, primarily ZSS, to
build powerful APIs to handle z/OS data that would otherwise be unavailable or insecure to access from higher-level languages and
software. As part of Zowe's security model, this server is not accessible over a network but rather empowers the less privileged servers.
It runs as a separate STC, ZWESISTC to run the program zZWESIS@1 under its own user ID ZWESIUSR.

Unlike all of the servers described above which run under the ZWESLSTC started task as address spaces for USS processes, the Cross

Memory server has its own separate started task zwesisTc and its own user ID zZWESIUSR that runs the program zWESISe1.

API| Gateway

The API Gateway is a proxy server that routes requests from clients on its northbound or upstream edge, such as web browsers or the
Zowe command line interface, to servers on its southbound (downstream) edge that are able to provide data to serve the request. The
API Gateway is also responsible for generating the authentication token used to provide single sign-on (SSO) functionality. The API
Gateway homepage is https://<ZOWE_HOST_IP>:7554. Following authentication, this URL enables users to navigate to the API
Catalog.

API Mediation Layer

API| Mediation Layer

@ The API Catalog is running
@ The Discovery Service is running

@& The Authentication service is running

When the API Gateway is running, this server is accessible at https://<ZOWE_HOST_IP>:7554/. When running on z/OS, the server

uses the jobname suffix of AG.

API Catalog

The API Catalog provides a list of the API services that have registered themselves as catalog tiles. These tiles make it possible to view
the available APIs from Zowe's southbound (downstream) servers, as well as test REST API calls.

API Catalog Onboard New APl v Refresh Static APIs [lO}

Search for APIs Q

Available API services

API Mediation Layer API API Mediation Layer Applicati Static API Services
The API Mediation Layer for z/OS internal API services. The Applications which demonstrate how to make a service Services which demonstrate how to make an APl service
API Mediation Layer provides a single point of access to integrated to the API Mediation Layer ecosystem discoverable in the APIML ecosystem using YAML definitions

mainframe REST APIs and offers enterprise cloud-like
feature...

® All services are running SSO @ All services are running SSO ® All services are running
ZOSMF Zowe Applications

zOSMF Applications which are part of Zowe.

® All services are running SSO @ All services are running §SO

When the APl Gateway is running, this server is accessible at https://<ZOWE_HOST_IP>:7554/apicatalog/ui/v1. When the API
Catalog is running, this server's APl documentation is accessible at the API Catalog tile Zowe Applications which can be viewed at
https://<ZOWE_HOST_IP>:7554/apicatalog/ui/vi/#/tile/apimediationlayer/apicatalog When running on z/OS, the server

uses the jobname suffix of AC.

API Discovery

The API Discovery server acts as the registration service broker between the APl Gateway and its southbound (downstream) servers.
This server can be accessed through the URL https://<ZOWE_HOST_IP>:7552 making it possible to view a list of registered API

services on the API discovery homepage.

‘ .. Spring HOME LAST 1000 SINCE STARTUP

System Status

Environment ®st Current time 2020-04-30T14:50:51 «0000
Data center default Uptime 02-35

Lease expiration enabled true

Renews threshold 18

Renews (last min) a4
DS Replicas

Instances currently registered with Eureka

Application Availability Zones

APICATALOG n/a(l) m UP (1) - winmvs3t ey ibm.com:apica

DATASETS niall) (1] UP (1) - STATIC-winmvs3b hursley ibm.com:datasets:26504
DISCOVERY n/a(l) (1] UP(1) - w

EXPLORER-JES n/a (1) (§1] UP (1) - STATIC-winmvs3b.hursiey ibm com:explorer-jes: 26505
EXPLORER-MVS n/a(l) (1] UP (1) - STATIC-winmvs3b. hursley. ibm. com:explorer-mvs: 26506
EXPLORER-USS nfafl) (41 UP (1) - STATIC-winmvs3b.hursley.ibm.comeexplorer-uss: 26507
GATEWAY n/a(l) m UP (1) - winmvs3b_hursley.ibm.com:gateway: 26502

JoBs nfa(l) (1] UP (1) - STATIC-winmwvs3b.hursley.ibm.com;jobs-26503
UNIXFILES nfa(l) a UP (1) - STATIC-winmvs3b.hursley.ibm.comunixfiles: 26504
ZLUX n/a(l) m UP (1) - localhost:zlux:26508

ZOSMF n/a(l) (41} UP (1) - STATIC-winmvs3b.hursley. ibm.com:zosmf:32070

General Info

L

When running on z/OS, the server uses the jobname suffix of AD.

Caching service

The Caching service aims to provide an APl which offers the possibility to store, retrieve, and delete data associated with keys. The
service is used only by internal Zowe applications and is not exposed to the internet. The Caching service URL is
https://<ZOWE_HOST_IP>:7555. For more information about the Caching service, see Using the Caching Service.

When the API Gateway is running, this server is accessible at https://<ZOWE_HOST IP>:7554/cachingservice/api/vi. When the API
Catalog is running, this server's APl documentation is accessible at the API Catalog tile Zowe Applications which can be viewed at
https://<ZOWE_HOST_IP>:7554/apicatalog/ui/vl/#/tile/zowe/cachingservice. When running on z/OS, the server uses the

jobname suffix of CS.

Desktop Apps

Zowe provides a number of rich GUI web applications for working with z/OS. Such applications include the Editor for files and
datasets, the JES Explorer for jobs, and the IP Explorer for the TCPIP stack. You can access them through the Zowe desktop.

https://docs.zowe.org/stable/getting-started/user-guide/api-mediation/api-mediation-caching-service

x -0 MVS Explorer
X -0 JES Explorer
WINCHJ l<] - mmm: Text -0
; Ovners " Prefi= ZWE" Jobid= STCO8101-5TDOUT X
IWINCH. BORK.S2V 2 » This program demonstrates the following Language x N ———— -
3 « Environment callable T
IMWINCH. BORK.SZV 1 & services : CEEMOUT, CEELOCT, CEEDATE 2 Appendisg 3 in ta &
5 Job Fitars ~ 3 Verifying node exists
CIWINGHJ.COBOL H 4 Juse/lpp/TBM en] /u12rd/ BN/ mede-Latest -0e390-5300x/bin/node is fuse/1pp/TBM/en] v12e0/TEM
) 7 -) PIVISION pri-s 5 Rusning spp-server pl mstaller. Log=/u/winchj/zowe-instance/logs/install-app. log
Brisn B ZWENISV.STCO610 § Wtils_paths/u/winch)/sowe-1. 10,8/ runt ine/companent s/app-server/share/1lux-server=1 ranewor
i . SpP_paths/u/winch)/rowe-instance/workspace/api-catalog
Boavele Jivtitioation Mvisjen. B .esusaLe § 1500 path=/ufwinch]/zove- instance/workspace/ app-server/serverCont ig/server, json
e b H . - Besit : 30 12:15:36,396 <ZWED:65736= ZWESVUSR INFO (_zsf.utils,util.|s:288) ZWEDOOS1T fuf
WINCHJ.JCL DATA DIVNISION .
- e 1
-0 IWESVUSR INFO (zsl"uhll it
IWINCH..JCL DEMGC sy e Besvsuse u 17:15:36.400 ZWEDA19ST - Registering App (I
- N " D0 2020-04-30 12:15:36. EDRLIAT - App arg. zoveraph.catalep insiailed to /urwinchicove
IWINCH. PARMLIB Norking-Storage Sectioa. B stoour 13 Ended with rc=0 " J !
- ¥ STDERRA 14 Verifyisg node &
MWINCHU.PLY o Boclarstises far She Gacsl dute/ting sercice. B Fus nwnw:nu-um T8/ node-Lates t—0s 90-4 300 /bin/mode is Jusr/lpp/ I:lwfnj/ul? /1
JESMSOLO Ru‘mlng spp-server plugin installer, Loge/ufwinch)/zowe-instancesLogs/instal 09
IWINCH. SPF.ISPPF oy I : 7 Char a/winch)/ Eme-1. 10,/ rent 10/ conponent s/ app-36rver/ share/ T \un-server
. e . JESYSMSG Y WIWANCH] 20w~ 13t ance/warkspace/explorer—jes
BWINCHU.SPFLOG2 o B B4 My o /ufwineh | 2oue- ins tance orkspace spe-server/serverCont ig/server,
BWINCH SPFLOGS 77 Dest-output 7IC 53(9) Binary.
77 Lildate 59(8) Binary.
B WINCH). SPFTEMP 77 Lilsecs o
7 Greg PIC X(17). i \f}
.WINR.HJ SPFTEMP installed to zu.iuimh;uou
e ws Declarations for messages and pattern for date
." CHLTEIT R 0 Pettern. in @ *+ Jute/\pa/ TN/ ca /120010
WINGHJ.USER.LOC e/ Logs/ instal\-app. Log
NCHI.USER L< u 7ic o) minary vase a5, Tox e (L
“Tody is Wanmaisst, Hwmenomen: 20, Y oy #1/0in/sh = Fortigrserver. jso
IFrame Sample 771 Start-nsg PIC KBS} Volue Tutil.is:288) IWEDOOSIT us
“Callable Service example starting.”. Binstance env # Note this seript is executed like & shell script, so can have embedded varisbles

TODD LATER - rename varisble nases to match some comsistent naming conventisns

JES Explorer # global config
xp Bnew 7 ROOT_DTRafu/inch /2ome-1. 10,0/ runtine
5 ZOWE_PREFIX=
ta It M_msnnc(e
MV3 Explonr # Conma separated list of componeats should start from [GATEMAY,DESKTOP)

LAUNCH_COMPONENT_GROUPS=DESKTOP, GATEWAY

JAVA_HOME=/usr/\pp/java/]B, 0_64

#NODE_MOME=/us r/ Lpp/ TBM/ crij / VB o/ 184/ mode- Lat est - <5308 304x
& BNODE_MOME=/w/winchi/temp/node-v12. 14.1-05 3085

17 MOOE_MOME=/use/ ppy 18/ Ch 1 /12 8/ 188/ node- Latest-0s 1985 398x

18 #NODE_WOME=/u/winch]/tenp/node-vE. 16.2-05398-5390x
19 #NODE_HOME=/ufwinch]/temp/node-v. 16. 1-05308-1308x
20 #NODE_HOME=/u/winch]/temp/node—vE. 17.8-05398-53%0x

2/05 WF contig
23 Z0SMF_PORT-32070
20SMF_HOS Towirmvs b, hurs ley. ibn. com

File APl and JES API

The File API server provides a set of REST APIs for working with z/OS data sets and Unix files. These APIs can be enabled in Zowe

server configuration.
The JES API server provides a set of REST APIs for working with JES. These APIs can be enabled in Zowe server configuration.

Both the File APl and JES API servers are registered as tiles in the API Catalog, so users can view the Swagger definition and test API

requests and responses.

Version: v2.16.x LTS

Zowe Security Overview

Zowe implements comprehensive measures to secure mainframe services and data resources in transition and in rest:

e Digital certificates are used by Zowe to facilitate secure electronic communication and data exchange between people, systems,
and devices online.

e User identity is authenticated through modern authentication methods such as OIDC/Oauth2, Multi-Factor Authentication (MFA),
JWT, or Personal Access Token (PAT).

e User access is authorized by System Authorization Facility (SAF) / External Security Manager (ESM).

Before installation and use of Zowe server-side components, it is practical to first learn about the core security features built into the
Zowe architecture.

This document provides an overview of the security technologies and features implemented by Zowe and links to Zowe practical
guides on how to achieve specific tasks and goals.

Note: If you are familiar with security technologies and concepts such as digital certificates, authentication, authorization, and z/OS
security, you may prefer to skip the introductory sections, and see the Additional resources section at the end of this article to jump
directly to the security related technical guidance provided on how to Set up Zowe, Use Zowe or Extend Zowe.

Review the following sections to learn about how Zowe leverages modern security concepts and technologies:

e Digital certificates
e User Authentication

e Access Authorization

Digital certificates

A Digital Certificate is an electronic file that is tied to a cryptographic (public and private) key pair and authenticates the identity of a
website, individual, organization, user, device or server. The de-facto standard is the x.509 family type of certificates, which are the
foundation behind Public Key Infrastructure (PKI) security. An X.509 certificate binds an identity to a public key using a digital
signature. A certificate contains an identity (a hostname, or an organization, or an individual) and a public key (RSA, DSA, ECDSA,
ed25519, etc.).

A certificate can be self-signed or issued by a Certificate Authority (CA). A CA is a trusted organization which provides infrastructure

for creation, validation and revocation of the certificates according to the contemporary security standards.

Note: For testing purposes of Zowe, it is acceptable to use certificates issued and signed either by the company's local CA, or even
self-signed certificates issued by Zowe security tools specific for the target technology platform. Use of self-signed certificates,

however, is not recommended for production environments.

Tip: Review digital certificates terminology in the Zowe security glossary before getting started with configuring certificates.

Digital certificates usage

https://docs.zowe.org/stable/getting-started/appendix/zowe-security-glossary#certificate-concepts

Zowe uses digital certificates to secure the communication channel between Zowe components as well as between Zowe clients and
Zowe services. Digital client certificates can also be used to validate that a client-user (the service user) identity is known to the
mainframe security facility.

Next Steps:

e Read more about digital certificates mechanics in the Use certificates in the Zowe documentation.

e Read the Zowe certificate configuration overview article in the Zowe User Guide documentation to understand the various
options for Zowe certificate configuration.

User Authentication
Zowe always authenticates the users accessing its interfaces and services.

Zowe API ML implements a Singls-Sign-On feature which allows users to authenticate once, whereby users can access all mainframe

resources that they are granted access rights to for the period in which the Zowe credentials remain valid.

API ML uses multiple authentication methods - from Basic Auth (username-password), to external Multi-Factor Authentication

providers, and modern authentication protocols, such as OIDC/OAuth2.
Next steps:

e For more details on the authentication methods used by Zowe, see the dedicated API ML User Authentication article.

Access Authorization

Authorization is the mechanism by which a security system grants or rejects access to protected resources.

Zowe fully relies on the SAF/ESM for control on the user access to mainframe resources. Authorization is processed by SAF when a

mainframe service attempts to access these services under the identity of the user authenticated by Zowe.

Tip: We recommend you review the core Authorization concepts by reading the related topics in the Zowe Security Glossary.

SAF resource check

In some cases Zowe API ML can check for the authorization of the user on certain endpoints even before the request is propagated to
the target mainframe service. Access to a SAF resource is checked with the installed z/OS External Security Manager (ESM).

Next steps: For detailed information, see the SAF resource checking documentation.

Additional resources

For more information about getting started with certificates including dertermining your certificate configuration use case, importing
certificates, generating certificates and using certificates, see the following resources:

e Use-case based certificates configuration scenarios

e Generate certificates for Zowe servers

https://docs.zowe.org/stable/user-guide/use-certificates
https://docs.zowe.org/stable/user-guide/configure-certificates
https://docs.zowe.org/stable/getting-started/zowe-security-overview/zowe-security-authentication
https://en.wikipedia.org/wiki/Authorization
https://en.wikipedia.org/wiki/Authorization
https://docs.zowe.org/stable/getting-started/appendix/zowe-security-glossary
https://docs.zowe.org/stable/getting-started/user-guide/api-mediation/configuration-saf-resource-checking
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios
https://docs.zowe.org/stable/user-guide/generate-certificates

® Import certificates

e Configure Zowe to use certificates

https://docs.zowe.org/stable/user-guide/import-certificates
https://docs.zowe.org/stable/user-guide/configure-certificates

Version: v2.16.x LTS

Glossary of Zowe Security terminology

Zowe implements a number of modern cyber-security concepts. Before getting started with configuring certificates, it is useful to
familiarize yourself with the basic terminology. Read the following definitions for explanation of the security terms related to the core

security technologies applied by Zowe:

Certificate concepts

Certificate verification

Zowe certificate requirements

Certificate setup types

Certificate concepts

e Keystore

e Truststore

e PKCS12

e 7/0OS Key Ring
e Server certificate
e C(lient certificate

e Self-signed certificates

Keystore

The keystore is the location where Zowe stores certificates that Zowe servers present to clients and other servers. In the simplest case,

the keystore contains one private key and a certificate pair, which can then be used by each Zowe server.

When using a key ring, a single key ring can serve both as a keystore and as a truststore if desired.

Truststore

The truststore is used by Zowe to verify the authenticity of the certificates it encounters, whether communicating with another server,
with one of Zowe own servers, or with a client that presents a certificate. A truststore is composed of Certificate Authority (CA)
certificates which are compared against the CAs that an incoming certificate claims to be signed by. To ensure a certificate is authentic,
Zowe must verify that the certificate's claims are correct. Certificate claims include that the certificate was sent by the host that the
certificate was issued to, and that the cryptographic signature of the authorities the certificate claims to have been signed by match
those signatures found within the truststore. This process helps to ensure that Zowe only communicates with hosts that are trusted

and have been verified as authentic.

When using a key ring, a single key ring can be both a keystore and a truststore if desired.

PKCS12

PKCS12 is a file format that allows a Zowe user to hold many cryptographic objects in one encrypted, password-protected file. This file

format is well-supported across platforms but because it is just a file, you may prefer to use z/OS key rings instead of PKCS12

certificates for ease of administration and maintenance.

z/0S Key Ring

z/OS provides an interface to manage cryptographic objects in "key rings". As opposed to PKCS12 files, using z/OS key rings allows
the crypto objects of many different products to be managed in a uniform manner. z/OS key rings are still encrypted, but do not use
passwords for access. Instead, SAF privileges are used to manage access. Java's key ring API requires that the password field for key

ring access be set to "password", so despite not needing a password, you may see this keyword.

Use of a z/OS keystore is the recommended option for storing certificates if system programmers are already familiar with the
certificate operation and usage. Creating a key ring and connecting the certificate key pair requires elevated permissions. When the
TSO user ID does not have the authority to manipulate key rings and users want to create a Zowe sandbox environment or for testing

purposes, the USS keystore is a good alternative.

Server certificate

Servers need a certificate to identify themselves to clients. Every time you go to an HTTPS website for example, your browser checks
the server certificate and its CA chain to verify that the server you reached is authentic.

Client certificate

Clients do not always need certificates when communicating with servers, but sometimes client certificates can be used wherein the
server verifies authenticity of the client similar to how the client verifies authenticity for the server. When client certificates are unique

to a client, this can be used as a form of authentication to provide convenient yet secure login.

Self-signed certificates

A self-signed certificate is one that is not signed by a CA at all — neither private nor public. In this case, the certificate is signed with its
own private key, instead of requesting verification from a public or a private CA. This arrangement, however, means there is no chain

of trust to guarantee that the host with this certificate is the one you wanted to communicate with. Note that these certificates are not
secure against other hosts masquerading as the one you want to access. As such, it is highly recommended that certificates be verified

against the truststore for production environments.

Certificate verification

When you configure Zowe, it is necessary to decide whether Zowe will perform verification of certificates against its truststore. In the
Zowe configuration YAML, the property zowe.verifyCertificates controls the verification behavior. It can be DISABLED,

NONSTRICT, Or STRICT.

You can set this property either before or after certificate setup, but it is recommended to set zowe.verifyCertificates before

certificate setup because it affects the automation that Zowe can perform during certificate setup.

e DISABLED verification
o NON-STRICT verification
e STRICT verification

DISABLED verification

If you set zowe.verifyCertificates to DISABLED, certificate verification is not performed. This is not recommended for security

reasons, but may be used for proof of concept or when certificates within your environment are self-signed.

If you set DISABLED before certificate setup, Zowe will not automate putting z/OSMF trust objects into the Zowe truststore. This can
result in failure to communicate with z/OSMF if at a later time you enable verification. As such, it is recommended to either set

verification on by default, or to re-initialize the keystore if you choose to turn verification on at a later point.

NON-STRICT verification

If you set zowe.verifyCertificates to NONSTRICT, certificate verification will be performed except for hostname validation. Using

this setting, the certificate Common Name or Subject Alternate Name (SAN) is not checked. Skipping hostname validation facilitates
deployment to environments where certificates are valid but do not contain a valid hostname. This configuration is for development

purposes only and should not be used for production.

STRICT verification

STRICT is the recommended setting for zowe.verifyCertificates. This setting performs maximum verification on all certificates

Zowe sees and uses a Zowe truststore.

Zowe certificate requirements

If you do not yet have certificates, Zowe can create self-signed certificates for you. This is not recommended for production. Note that

the certificates must be valid for use with Zowe.

e Extended key usage
® Hostname validity

e 7/OSMF access

Extended key usage

Zowe server certificates must either not have the Extended Key Usage (EKU) attribute, or have both the TLS web Server

Authentication (1.3.6.1.5.5.7.3.1) and TLS Web Client Authentication (1.3.6.1.5.5.7.3.2) values present within.

Some Zowe components act as a server, some as a client, and some as both - client and server. The component certificate usage for
each of these cases is controlled by the Extended Key Usage (EKU) certificate attribute. Zowe components use a single certificate/the
same certificate for client and server authentication. As such, it is necessary that this certificate is valid for the intended usage/s of the
component - client, server, or both. The EKU certificate extension attribute is not required. If, however, the EKU certificate extension
attribute is specified, it must be defined with the intended usage/s. Otherwise, connection requests will be rejected by the other party.

Hostname validity

The host communicating with a certificate should have its hostname match one of the values of the certificate's Common Name or
Subject Alternate Name (SAN). If this condition is not true for at least one of the certificates seen by Zowe, then you may wish to set

NON-STRICT verification within Zowe configuration.

z/OSMF access

The z/OSMF certificate is verified according to Zowe Certificate verification setting, as is the case with any certificate seen by Zowe.
However, Zowe will also set up a trust relationship with z/ZOSMF within the Zowe truststore during certificate setup automation if the
certificate setting is set to any value other than DISABLED.

Certificate setup types

Whether importing or letting Zowe generate certificates, the setup for Zowe certificate automation and the configuration to use an
existing keystore and truststore depends upon the content format: file-based (PKCS12) or z/OS key ring-based.

e File-based (PKCS12) certificate setup
e 7/0OS key ring-based certificate setup

File-based (PKCS12) certificate setup

Zowe is able to use PKCS12 certificates that are stored in USS. Zowe uses a keystore directory to contain its certificates primarily in
PKCS12 (.p12, .pfx) file format, but also in PEM (.pem) format. The truststore is in the truststore directory that holds the public

keys and CA chain of servers which Zowe communicates with (for example z/OSMF).

z/0S key ring-based certificate setup
Zowe is able to work with certificates held in a z/OS Key ring.

The JCL member .SZWESAMP(ZWEKRING) contains security commands to create a SAF keyring. By default, this key ring is named
ZoweKeyring. You can use the security commands in this JCL member to generate a Zowe certificate authority (CA) and sign the

server certificate with this CA. The JCL contains commands for all three z/OS security managers: RACF, TopSecret, and ACF2.
There are two ways to configure and submit ZWEKRING:
e Copy the JCL zZWEKRING member and customize its values.
e Customize the zowe.setup.certificate sectionin zowe.yaml and use the zwe init certificate command.
You can also use the zwe init certificate command to prepare a customized JCL member using ZWEKRING as a template.
A number of key ring scenarios are supported:

e Creation of a local certificate authority (CA) which is used to sign a locally generated certificate. Both the CA and the certificate

are placed in the zowekeyring.
¢ Import of an existing certificate already held in z/OS to the ZoweKeyring for use by Zowe.

e Creation of a locally generated certificate and signed by an existing certificate authority. The certificate is placed in the key ring.

Version: v2.16.x LTS

Zowe Certificates overview

In order to leverage certificates in Zowe, it is useful to review the key concepts of digital certificates-based security and how Zowe

implements this technology.

e Digital certificates definition
¢ Digital certificates usage

e PKI (Public Key Infrastructure)
e Transport Layer Security (TLS)
e Digital certificates types

e Certificates storage

Digital certificates definition

A Digital Certificate is an electronic file that is tied to a cryptographic (public and private) key pair and authenticates the identity of a
website, individual, organization, user, device or server. The de facto standard is the x.509 family type of certificates, which are the

foundation behind Public Key Infrastructure (PKI) security.

An X.509 certificate binds an identity to a public key using a digital signature. A certificate contains an identity (a hostname, or an
organization, or an individual) and a public key (RSA, DSA, ECDSA, ed25519, etc.).

Certificates can be self-signed or issued by a Certificate Authority (CA). A CA is an organization which provides infrastructure for the

creation, validation, and revocation of certificates according to contemporary security standards.

@ NoTE

For testing purposes of Zowe, it is acceptable to use certificates issued and signed either by a company local CA, or certificates
that are signed by a CA created by Zowe security tools specific for the target technology platform. Use of self-signed certificates

is not recommended for production environments.

Digital certificates usage

Digital certificates according to x.509 standard specification are the cornerstone for securing communication channels between clients

and servers.
X.509 Digital certificates are primarly used to implement the following functions:

e Verification of the identity of a sender/receiver of an electronic message during TLS handshake.
e Encryption/Decryption of the messages between the sender and the receiver.

e |dentification of client-service users.

Zowe uses digital certificates as a foundational element for both communication and for identity security. Additionally, Zowe provides
a client identity validation functionality based on the ownership of the provided x.509 client certificate and the mainframe security

authentication mechanism.

For more information about how Zowe leverages certificates, see Zowe certificate usage.

To review the various Zowe certificate configuration options, see the Zowe certificate configuration overview.

Public key infrastructure

Public Key Infrastructure (PKI) is a key element of internet security. PKl is both the technology and processes that make up the
framework for encryption to protect and authenticate digital communications. PKI includes software, hardware, policies, and
procedures that are used to create, distribute, manage, store, and revoke digital certificates and manage public-key encryption.

For detailed information about Public Key Infrastructure (PKI), see How Does PKI Work? in the Keyfactor documentation.

Visit the following link to learn more about PKI in the context of the z/OS Cryptographic Services.

Transport Layer Security

Transport Layer Security (TLS) is a networking cryptography protocol that provides authentication, privacy, and data integrity between
two communicating computer applications. TLS is a successor to Secure Socket Layer (SSL), which was deprecated in 2015.

@ NoTE

While the transition from SSL 3.0 to TLS 1.0 occurred in 1999, the term SSL continues to be in common usage. At the time of this
publication, this technology is still oftentimes referred to as SSL/TLS.

TLS defines a client-server handshake mechanism to establish an encrypted and secure connection, to ensure the authenticity of the
communication between parties. During the handshake, the parties negotiate an exchange algorithm, cipher suites, and exchange key
material to establish a stateful encrypted connection. The exact steps of the TLS handshake depend on the protocol version/s

supported by the client and the server. The current version at the time of this publication is 1.3, while version 1.2 is widely supported.

Being familiar with the key concepts and terms describing TLS security helps to properly set up the Zowe servers network security and
to troubleshoot configuration issues. The following list presents some of the key concepts and terms:

e Cipher Suite

e Key Exchange

e Symmetric Encryption
e Asymmetric Encryption
e Authentication

e Basic vs mutually-authenticated handshake

The following diagram illustrates the TLS handshake steps:

https://docs.zowe.org/stable/user-guide/use-certificates
https://docs.zowe.org/stable/user-guide/configure-certificates
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://www.keyfactor.com/education-center/what-is-pki/#section2
https://www.ibm.com/docs/en/zos/2.3.0?topic=planning-introducing-pki-services
https://en.wikipedia.org/wiki/Transport_Layer_Security

Client Direction Direction

Client Hello)

Server Hello

Certificate

Server Key Exchange

AN AN AN AN

Server Hello Done

®© © 0 ©0 606 © O
L E L ERE N KL
G U R BRORR MR R MR RN

Client Key Exchange >
Change Cipher Spec >
Finished >
< Change Cipher Spec
£ Finished

The architecture of Zowe strictly relies on Transport Layer Security (TLS) to secure communication channels between Zowe

components, as well as between client applications and Zowe server components.

For more information, see the TLS requirements in Zowe APl ML requirements.

@ NoTE

When installed on a mainframe system, Zowe is able to utilize AT-TLS implementation if supported by the corresponding z/OS

version/installation. For more information, see Configuring AT-TLS for APl Mediation Layer.

https://docs.zowe.org/stable/getting-started/extend/extend-apiml/zowe-api-mediation-layer-security-overview#zowe-api-ml-tls-requirements
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-at-tls

Digital certificates types

Zowe's architecture also distinguishes several aspects of PKI artifacts and their usage. Based on these artifacts and use-cases, users can
determine which certificate type to use. Some certificate types are specific for a given technology, while others are generic and

applicable across a wider spectrum of platforms.
Certificates come in various file formats and can be stored in different certificates storage types.

Digital X.509 certificates can be issued in various file formats such as PEM, DER, PKCS#7 and PKCS#12. PEM and PKCS#7 formats use
Base64 ASCIl encoding, while DER and PKCS#12 use binary encoding.

The choice of certificate format depends on the technologies used in the implementation of the server components and on the

certificate storage type. For example, Java servers can use JKS and JCEKS keystores, which are specific for the platform.
Zowe supports:

o file-based PKCS12

PKCS12 certificates are the most general and widely deployed certificate format.

e z/0S keyring-based keystore (JKS/JCEKS)
JKS/JCEKS certificates are specific types of certificates that depend on the Java environment.

@ NoTE

Java 9 and higher can also work with PKCS12 certificates.

Certificates storage
There are two options for the storage of certificates:
e Keystore and Truststore combination
e SAF Keyrings
Keystore and Truststore
Two key concepts to understand storage and verification of certificates are keystores and truststores.

e Keystores are used to store certificates and the verification of these certificates.

e Truststores are used to store the verification.

Zowe supports keystores and truststores that are either z/OS keyrings (when on z/OS) or PKCS12 files. By default, Zowe reads a
PKCS12 keystore from keystore directory in zowe.yaml. This directory contains a server certificate, the Zowe generated certificate

authority, and a truststore which holds intermediate certificates of servers that Zowe communicates with (for example z/OSMF).

Keystores

Zowe can use PKCS12 certificates stored in USS to encrypt TLS communication between Zowe clients and Zowe z/OS servers, as well

as intra z/OS Zowe server to Zowe server communication. Zowe uses a keystore directory to contain its external certificate, and a

truststore directory to hold the public keys of servers which Zowe communicates with (for example z/OSMF).

Truststores

Truststores are essential to provide secure communication with external services. The truststore serves as a secure repository for
storing certificates and trust anchors. In the context of Zowe, the truststore establishes the trust relationships with external services as

well as manages the relationship between Zowe's components and the certificates presented by the external services.

In addition to utilizing the intra-address space of certificates, Zowe incorporates external services on z/OS to enhance the encryption
of messages transmitted between its servers. These external services, such as zZOSMF or Zowe conformant extensions, have registered

themselves with the APl Mediation Layer.

The API Mediation Layer, acting as an intermediary, validates these certificates. When the API ML receives a certificate from an external

service, it examines each certificate in the certificate chain and compares it to the certificates in the truststore.

By leveraging the truststore, Zowe ensures that only trusted and authorized external services can establish communication with its

servers.

SAF Keyring

An alternative to certificate storage with keystores and trustores is to use a SAF Keyring. Use of a SAF Keyring is more secure than
PKCS12 files. This SAF keyring method also makes it possible to import an existing certificate or generate new certificates with Top
Secret, ACF2, and RACF.

For details about SAF Keyring, see the documentation APl ML SAF Keyring in the article Certificate management in Zowe API

Mediation Layer.

https://docs.zowe.org/stable/extend/extend-apiml/certificate-management-in-zowe-apiml#api-ml-saf-keyring

Version: v2.16.x LTS

Zowe User Authentication

The API Mediation Layer provides multiple methods which clients can use to authenticate.

e Authentication with JSON Web Tokens (JWT)

e Authentication with client certificates

e Authentication with Personal Access Token (PAT)

e Authentication with SAF Identity Tokens

e Multi-factor authentication (MFA)

e Certificate Authority Advanced Authentication Mainframe (CA AAM)

Authentication with JSON Web Tokens(JWT)

When the user successfully authenticates with the API ML, the client receives a JWT token in exchange. This token can be used by the
client to access REST services behind the API ML Gateway and also for subsequent user authentication. The access JWT Token is signed
with the private key that is configured in the Zowe Identity Provider's certificate store, regardless of whether the token is in a keystore
or keyring.

To utilize Single-Sign-On (SSO), the Zowe API ML client needs to provide an access token to API services in the form of the cookie

apimlAuthenticationToken, or in the Authorization: Bearer HTTP header as described in this authenticated request example.

Authentication with client certificates

If the keyring or a truststore contains at least one valid certificate authority (CA) other than the CA of the API ML, it is possible to use
client certificates issued by this CA to authenticate to the APl ML.

For more information, see the Authentication for APl ML services documentation

Authentication with Personal Access Token (PAT)

A Personal Access Token (PAT) is a specific scoped JWT with a configurable validity duration. The PAT authentication method is an
alternative to using a client certificate for authentication. It is disabled by default. To enable this functionality, see Enabling single sign

on for clients via personal access token configuration.
Benefits of PAT

e |long-lived. The maximum validity is 90 days.
e Scoped. Users are required to provide a scope. It is only valid for the specified services.

e Secure. If a security breech is suspected, the security administrator can invalidate all the tokens based on criteria as established by

rules.

For more information about PAT, see Authenticating with a Personal Access Token documentation.

https://docs.zowe.org/stable/user-guide/api-mediation-sso
https://github.com/zowe/sample-spring-boot-api-service/blob/master/zowe-rest-api-sample-spring/docs/api-client-authentication.md#authenticated-request
https://docs.zowe.org/stable/extend/extend-apiml/authentication-for-apiml-services
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-personal-access-token
https://docs.zowe.org/stable/user-guide/api-mediation/authenticating-with-personal-access-token

Authentication with SAF Identity Tokens

The SAF Authentication Provider allows the APl Gateway to authenticate the user directly with the z/OS SAF provider that is installed

on the system.

For more information about configuring the token, see Configure signed SAF Identity tokens (IDT).

Multi-factor authentication (MFA)

Multi-factor authentication is provided by third-party products which Zowe is compatible with. The following are known to work with
Zowe:

e CA Advanced Authentication Mainframe

e [BM Z Multi-Factor Authentication.

Additionally, Zowe APl ML can be configured to accept OIDC/OAuth2 user authentication tokens. In this particular case, MFA support
is built into the OIDC provider system. It does not rely on the mainframe MFA technology, but is equally secure.

For details about multi-factor authentication, see the MFA documentation here.

Certificate Authority Advanced Authentication Mainframe (CA AAM)

To add a dynamic element to the authentication, you can configure the Certificate Authority Advanced Authentication Mainframe to

enable multi-factor authentication. For more information about CA AAM, see the Advanced Authentication Mainframe documentation.

https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-signed-saf-identity-tokens-idt
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-advanced-authentication-mainframe/2-0.html
https://www.ibm.com/products/ibm-multifactor-authentication-for-zos
https://docs.zowe.org/stable/user-guide/mvd-configuration#multi-factor-authentication-configuration
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-advanced-authentication-mainframe/2-0.html

Version: v2.16.x LTS

High Availability

In order to deploy Zowe in high availability (HA) mode, it is necessary to set up a Parallel Sysplex® environment. A Parallel Sysplex is a
cluster of z/OS® systems that cooperatively use certain hardware and software components to achieve a high-availability workload

processing environment. A production instance with this High Availability setup is required to achieve the necessary availability.

Sysplex architecture and configuration

A Sysplex is required to make sure multiple Zowe instances can work together. For more configuration details, see Configuring Sysplex

for high availability.

To enable high availability when Zowe runs in a Sysplex, it is necessary to meet the following requirements:

The Zowe instance is installed on every LPAR.

The API services are registered to each Zowe instance.

A shared file system is created between LPARs in the Sysplex. For details, see How to share file systems in a Sysplex.

z/OSMF High Availability mode is configured. For details, see Configuring z/OSMF high availability in Sysplex.

The instance on every LPAR is started.
Configuration with high availability

The configuration for the specific instance is composed of the defaults in the main section and the overrides in the haInstances

section of the zowe.yaml configuration file.

In this section, ha-instance represents any Zowe high availability instance ID. Every instance has an internal id and a section with
overrides compared to the main configuration in the beginning of the zowe.yaml file. For more information, see Zowe YAML

configuration reference.

Caching service setup and configuration

Zowe uses the Caching Service to centralize the state data persistent in high availability (HA) mode. This service can be used to share

information between services.
If you are running the Caching Service on z/OS, there are three storage methods with their own characteristics:

¢ Infinispan (recommended)
o Part of the Caching service
o Does not need separate processes
o Highly performant
e VSAM
o Familiar to z/OS engineers
o Slow

e Redis

o Needs to run in Distributed world separately

https://docs.zowe.org/stable/getting-started/user-guide/configure-sysplex
https://www.ibm.com/docs/en/zos/2.4.0?topic=planning-sharing-file-systems-in-sysplex
https://docs.zowe.org/stable/getting-started/user-guide/systemrequirements-zosmf-ha
https://docs.zowe.org/stable/getting-started/appendix/zowe-yaml-configuration#yaml-configurations---hainstances
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-infinispan#infinispan-configuration
https://docs.zowe.org/stable/user-guide/configure-caching-service-ha#vsam
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-redis#redis-configuration

o Good for Kubernetes deployment

Version: v2.16.x LTS

Glossary of Zowe terminology

This glossary is part of a growing list of terms and concepts used in the Zowe ecosystem of projects.

This reference includes both technical as well as organizational terms that are specific to Zowe, the award-winning open source
initiative part of the Linux Foundation's Open Mainframe Project (OMP).

Not finding something you are looking for? Send a message to the Zowe Docs squad in the #zowe-doc Slack channel to discuss
updating this glossary.

@ NoTE

Security is central to a wide range of functionalities in Zowe. As such, a separate glossary of Zowe Security terminology is
available in the Overview section under Zowe security. For more information, see the Glossary of Zowe Security teminology.

For an overview of security in Zowe, see the Zowe Security policy on zowe.org.

Core Zowe Projects

Zowe API Mediation Layer (APl ML)

Provides a reverse proxy and enables REST APIs by providing a single point of access for mainframe service REST APIs like MVS Data
Sets, JES, as well as working with z/OSMF. APl ML has dynamic discovery capability for these services and Gateway is also responsible
for generating the authentication token used to provide single sign-on (SSO) functionality.

-

¥ Click here for descriptions of the various components that form the APl Mediation Layer.

API Catalog

Displays API services that have been discovered by the APl Mediation Layer.

API Discovery Service

As the central repository of active services in the APl Mediation Layer ecosystem, the API Discovery Service continuously collects

and aggregates service information to provide status updates. This enables the discoverability of services.
API Gateway

A proxy server that routes requests from clients on its northbound edge (such as web browsers or Zowe CLI) to servers on its
southbound edge that are able to provide data to serve the request.

Also responsible for generating the authentication token used to provide single sign-on (SSO) functionality.

Caching Service

https://openmainframeproject.slack.com/archives/CC961JYMQ
https://docs.zowe.org/stable/appendix/zowe-glossary/zowe-security-glossary
https://www.zowe.org/security

Designed for Zowe components in a high availability (HA) configuration. The caching service supports the HA of all components
within Zowe, allowing components to be stateless by providing a mechanism to offload their state to a location accessible by all
instances of the service, including those which just started.

Zowe Application Framework

Modernizes and simplifies working on the mainframe via a web visual interface. Functionality is provided through apps and a desktop
user experience called the Zowe Desktop. Base functionality includes apps to work with JES, MVS Data Sets, Unix System Services, as
well as a 3270 Terminal, Virtual Terminal, and an Editor.

Zowe CLI

Provides a command-line interface that lets you interact with the mainframe remotely and use common tools such as Integrated
Development Environments (IDEs), shell commands, bash scripts, and build tools for mainframe development. The core set of
commands includes working with data sets, USS, JES, as well as issuing TSO and console commands. The Zowe CLl is incredibly

popular in modern mainframe education.

Zowe client projects

Includes all the Zowe projects that are installed on the user's PC. Also known as Zowe client-side projects.

Zowe Client SDKs

Allow extenders to build applications on top of existing programmatic APIs such as z/OSMF. Currently supported client SDKs include
Node,js (core), Kotlin/z/OSMF, Python, Swift, and Java.

Zowe Explorer

A Visual Studio Code extension that modernizes the way developers and system administrators interact with z/OS mainframes. Zowe
Explorer lets you interact with data sets, USS files, and jobs that are stored on z/OS. Zowe Explorer is incredibly popular in modern
mainframe education.

Zowe server components

Includes all the Zowe components that are installed on z/OS. Also known as Zowe z/OS components or Zowe server-side components.

Zowe Systems Services Server (ZSS)

Working closely with ZIS, ZSS serves as one of the primary, authenticated back-ends that communicates with z/OS and provides Zowe
with a number of APIs: z/OS Unix files and data sets, control of the plug-ins and services lifecycle, security management, etc. The Zowe
Desktop especially delegates a number of its services to ZSS which it accesses through the default http port 7557.

ZSS is written in C and uses native calls to z/OS to provide its services.

Architecture and other components

Configuration Manager

Works closely with the Zowe Launcher to manage the configuration of Zowe across its lifecycle. Interacted with primarily via zwe

command

Core component

The definition of a core component is governed by the Technical Steering Committee (TSC), but typically, it is a packaged, foundational
piece that is part of base Zowe.

From the perspective of a conformant support provider, providing support for Zowe refers to providing support for each core

component of Zowe (although a provider may place their own limitations on what they support).

A core component is usually actively maintained by one or more squads. A component has a component manifest file that helps
identify it with the rest of Zowe.

Explorer

When used by itself, it often refers to the core Zowe component for Visual Studio Code, Zowe Explorer. However, the term Explorer is a
part of multiple titles across Zowe.

Extension

Generally used to describe additional, non-default Zowe plug-ins or components. See plug-in for additional context.
Imperative CLI Framework

Also known as Imperative, the code framework that is used to build plug-ins for Zowe CLI.

Plug-in

A more general term used to describe a modular piece of some component. Depending on component or squad context, a plug-in is

sometimes referred to as an app, extension, plug-in, etc.

A component may have multiple plug-ins, sometimes working together to form a single purpose or user experience, but an individual
plug-in belongs to a single component. See extension for additional context.

Secure credential store
Secret storage functionality embedded in core Zowe CLI and Zowe Explorer starting from Zowe V2.

Securely stores configured private credentials in the secure vault available on your client operating system. Examples of such vaults

include Windows Credential Manager on Microsoft Windows, and Passwords and Keys on Ubuntu Linux.
A separate plug-in of the same name used in Zowe V1 CLI.

Service

A service provides one or more APIs, and is identified by a service ID. Note that sometimes the term service name can be used to
mean service ID.

The default service ID is provided by the service developer in the service configuration file. A system administrator can replace the
service ID with a deployment environment specific name using additional configuration that is external to the service deployment unit.
Most often, this is configured in a JAR or WAR file.

https://docs.zowe.org/stable/appendix/server-component-manifest/

Services are deployed using one or more service instances, which share the same service ID and implementation.

Team configuration

A method of storing and managing Zowe CLI and Zowe Explorer team and user profiles introduced in Zowe Version 2.

This method saves team-specific profiles in the zowe.config.json configuration file and user-specific profiles in the
zowe.config.user.json configuration file. The location of the configuration file determines whether its profiles are applied globally

or per project.
Web Explorers

A suite of web apps on the Zowe Desktop that are part of the Zowe Application Framework and the core Zowe server installation.
They include the JES, MVS, USS, and IP Explorers. Not related to Zowe Explorer.

ZIS (Zowe Interprocess Services)

An APF-authorized server application that provides privileged services to Zowe in a secure manner. For security reasons, it is not an
HTTP server. Instead, this server has a trust relationship with ZSS.

Other Zowe components can work through ZSS in order to handle z/OS data that would otherwise be unavailable or insecure to

access from higher-level languages and software.

zLUX (V1 only)

This is an older, no-longer-used name for the Zowe Application Framework. Note that unreasonable-to-change references still exist
(such as GitHub repository names). Other synonyms/similar names include MVD (Mainframe Virtual Desktop) and zlux.

Zowe App Server

Refers to the Node.js-powered Application Server and is part of the Zowe Application Framework core project. It hosts the web

content of the Application Framework, and provides the Zowe Desktop, which is accessible through a web browser.

Zowe Chat

An incubator focused on working with the mainframe from popular chat clients such as Mattermost®, Microsoft Teams®, and Slack®.

Zowe Component

Zowe is a collection of both client and server code. You can install only some of Zowe, or all of it, depending on your needs. Zowe
splits the major sections of the code into components, with each serving an important purpose.

Server components are packaged in a standardized way to include all services and plug-ins in one deliverable. Extensions to Zowe can
also be delivered as third-party server components. For more information about how these extensions can use a manifest file, see
Zowe component manifest.

Zowe Desktop

Refers to the desktop Ul that is part of the Zowe Application Framework core component. The Zowe Desktop includes a number of
apps that run inside the App Framework, such as JES, MVS, and USS Explorers, as well as a 3270 Terminal, Virtual Terminal, and an
Editor.

https://docs.zowe.org/stable/extend/packaging-zos-extensions/#zowe-component-manifest

Zowe Embedded Browser for RMF/SMF and APIs (ZEBRA)

Provides re-usable and industry-compliant JSON-formatted RMF/SMF data records so that other ISV SW and users can exploit them
using open-source SW for many ways. For more information, see the ZEBRA documentation or visit Real ZEBRA Use Cases in Large

Production Systems in the Open Mainframe Project website.

Zowe install packaging

The set of programs (for example, zwe command) and utilities (for example, JCL, scripts) which manage the Zowe server configuration
and components. The infrastructure standardizes the packaging of components and controls how they are started, stopped, and how
configuration is provided to them.

Zowe IntelliJ Plug-in
Uses the Intelli) IDE to provide the ability to work with z/OS data sets and USS files, and to explore and manage JES jobs.
Zowe Launcher

A server-side program necessary for high availability/fault tolerance (HA/FT). It starts the Zowe server components and monitors their
processes so that if a component fails to start or crashes, the launcher restarts it. The restarting of a component has limits to prevent
loops in case of a component that has uncorrectable problems.

Community
Open Mainframe Project (OMP)

An organization which hosts and promotes development of open source software for the benefit of the IBM z mainframe community,
including but not limited to z/OS. Zowe(.org) is one of several programs in this project. See the Open Mainframe Project website for

more information.
Squad
A group of people contributing and participating in the Zowe project. Such a group owns one or more projects.

Every squad is required to have a representative on the Technical Steering Committee (TSC), and participate in relevant working
groups. For more information about active Zowe squads, see Current squads.

Technical Steering Committee (TSC)

The governing body that is responsible for the overall planning, development, and technical feedback assessment of Zowe. The TSC
meets every Thursday to go over squad updates and discuss issues regarding the Zowe initiative. To get notified of upcoming
meetings and agendas, join the TSC Slack channel.

Zowe Conformance Program

The Zowe Support Provider Conformance Program gives vendors the ability to showcase their Zowe support competencies via well
defined criteria. It is administered by the Linux Foundation and Open Mainframe Project.

Installation and configuration

https://github.com/zowe/zebra/tree/main/Documentation
https://openmainframeproject.org/blog/real-zebra-use-cases-in-large-production-systems-video/
https://www.openmainframeproject.org/
https://github.com/Zowe/community/blob/master/Technical-Steering-Committee/squads.md#current-squads
https://openmainframeproject.slack.com/archives/C01H6CY0ZD1

Base profile

A type of team configuration profile that stores connection information for use with one or more services. Your service profiles can
pull information from base profiles as needed, to specify a common username and password only once.

The base profile can optionally store tokens to connect to Zowe API Mediation Layer, which improves security by enabling Multi-
Factor Authentication (MFA) and Single Sign-on (SSO).

Convenience build

The Zowe installation file for Zowe z/OS components that is distributed as a PAX file in z/OS Unix and contains the runtimes and

scripts to install and launch the z/OS runtime. It is the most common method to install Zowe.

Extension directory

The standard z/OS Unix directory where Zowe extensions, or additional components, plug-ins, etc., outside the default install are

stored. It is specified in the Zowe configuration file via zowe.extensionDirectory.

Instance.env (V1 only)

The Zowe instance directory contains a instance.env file that stores the Zowe configuration data. The data is read each time Zowe is
started. You can modify instance.env to configure the Zowe runtime. For more information about updating this configuration data,

see Updating the instance.env configuration file.

Log directory

The standard z/OS Unix directory where Zowe logs are stored. It is specified in the Zowe configuration file via zowe.logDirectory .

OMVS

Use of z/OS UNIX services requires a z/OS UNIX security context, referred to as an OMVS segment, for the user ID associated with any
unit of work requesting these services. To learn more consult IBM Documentation.

Runtime directory

The z/OS Unix directory for the Zowe runtime, specified in the Zowe configuration file via zowe.runtimeDirectory . Also the parent

directory of the zwe command.

Service profile

A type of team configuration profile that stores connection information for a specific mainframe service, such as IBM z/OSMF. Plug-ins
can introduce other service profile types, such as the CICS profile to connect to IBM CICS.

SMP/E

The Zowe installation for Zowe z/OS components that is distributed as an SMP/E package, identified by FMID, and contains the
runtimes and the scripts to install and launch the z/OS runtime. The initial package is installed, and then a PTF is applied. It is the

second most common method to install Zowe.

SMP/E with z/OSMF workflow

https://docs.zowe.org/V1.28.x/user-guide/configure-instance-directory#updating-the-instanceenv-configuration-file
https://www.ibm.com/docs/en/zos/2.5.0?topic=profiles-omvs-segment-in-user

A similar process as SMP/E, except done through the z/OSMF web interface as a Zowe SMP/E workflow. It is the third most common

way to install Zowe.

Started task (STC)

A type of runnable/running program on z/OS and is the primary way of running Zowe. For more information about when to use
started tasks, see Determining whether to use a started task.

Zowe V2 has two started tasks:

e ZWESLSTC: The primary Zowe STC. In Zowe V1, it was just the HA/FT primary STC.
e ZWESISTC: The STC for the Zowe cross memory server (referred to as ZIS, formally XMEM)
e ZWESVSTC (outdated): V1 only

Workspace directory

The standard z/OS Unix directory where Zowe server component and extension configuration is stored. In V1, this was located within

the instance directory. In V2 it is specified in the Zowe configuration file via zowe.workspaceDirectory .

Zowe configuration file

The Zowe V2 replacement for instance.env in V1. The Zowe configuration file is a YAML file that is required to configure the Zowe

runtime. It is used across every step in Zowe, from configuration to install to start.
Sometimes referred to as the Zowe.yaml file. For more information on various attributes, see Zowe YAML configuration file reference.

Zowe instance directory (V1 only)

Also known as <INSTANCE_DIR>. Contains information that is specific to a launch of Zowe. It contains configuration settings that

determine how an instance of the Zowe server is started, such as ports that are used or paths to dependent Java and Node.js runtimes.

The instance directory also contains a log directory where different microservices write trace data for diagnosis, as well as a workspace

and shell scripts to start and stop Zowe.

Zowe runtime

Refers to the full, unarchived set of binaries, executable files, scripts, and other elements that are run when Zowe is started.
Sample library

The cross memory server runtime artifacts, the JCL for the started tasks, the parmlib, and members containing sample configuration
commands are found in the SZWESAMP PDS sample library. For more information, see PDS sample library and PDSE load library.

ZWEADMIN
A user group on the system that ZWESVUSR and ZWESIUSR should belong to. It must have a valid OMVS segment.
ZWESIUSR

A started task ID used to run the PROCLIB ZWESISTC that launches the cross memory server (also known as ZIS). It must have a valid
OMVS segment. For more information, see ZWESIUSR requirements.

https://docs.zowe.org/stable/appendix/zowe-glossary#smp/e
https://www.ibm.com/docs/en/zos/2.1.0?topic=tasks-determining-whether-use-started-task
https://docs.zowe.org/stable/appendix/Zowe-yaml-configuration/
https://docs.zowe.org/stable/user-guide/configure-xmem-server/#pds-sample-library-and-pdse-load-library
https://docs.zowe.org/stable/appendix/user-guide/systemrequirements-zos.md/#zwesiusr

ZWESVUSR

A started task ID used to run the PROCLIB ZWESLSTC. The task starts a USS environment using BPXBATSL that executes server
components such as the Application Framework, the API ML, and ZSS. To work with USS, the user ID ZWESVUSR must have a valid

OMVS segment. For more information, see ZWESVUSR requirements.

Plug-ins and extensions

APl Mediation Layer

API Catalog

Displays API services that have been discovered by the APl Mediation Layer.

Zowe Application Framework
3270 Terminal
An applicationin the Zowe Desktop that provides a user interface that emulates the basic functions of IBM 3270 family terminals.

File Tree

Formally known as the File Explorer, the FT refers to a re-usable widget existing in multiple apps across the Zowe Desktop to display
z/OS Unix files and data sets.

IP Explorer

An application in the Zowe Desktop you can use to monitor the TCP/IP stacks, and view active connections and reserved ports.
JES Explorer

An application in the Zowe Desktop to interact with z/OS UNIX files.

MVS (Multiple Virtual Storage) Explorer

An application in the Zowe Desktop to interact with z/OS data sets. Though still supported, active development has been moved to
the Zowe Editor.

USS Explorer

An application in the Zowe Desktop to interact with z/OS UNIX files. Though still supported, active development has been moved to
the Zowe Editor.

Virtual (VT) Terminal

An application in the Zowe Desktop that provides a user interface that emulates the basic functions of DEC VT family terminals.

Zowe Editor

An application in the Zowe Desktop to interact with z/OS data sets and Unix files. It uses the File Tree.

https://docs.zowe.org/stable/user-guide/systemrequirements-zos#zwesvusr

Zowe CLI Extensions

IBM® CICS® Plug-in for Zowe CLI

Extends the Zowe CLI to interact with CICS programs and transactions.
IBM® Db2® Plug-in for Zowe CLI

Enables interaction with Db2 for z/OS to perform tasks through Zowe CLI and integrate with modern development tools.

Use and development

APl Mediation Layer

Micronaut Enabler

A guide which helps to simplify the process of onboarding a REST service with the APl ML, using Micronaut and Gradle.

Node.js Enabler

An NPM package which helps to simplify the process of onboarding a REST service written in Node.js with the APl ML.

Plain Java Enabler (PJE)

A library which helps to simplify the process of onboarding a REST service with the APl ML, serving the needs of Java developers who
are not using either Spring Boot, Spring Framework, or Spring Cloud Netflix.

Sprint Boot Enablers

A collection of enablers which help to simplify the process of onboarding a REST service with the APl ML using various versions of

Spring framework.

Zowe Application Framework

Accessing the Desktop

The Zowe Desktop is accessed through the APl ML. The Desktop URL uses the following format:

App2App

A feature of the Zowe environment where one application plug-in can communicate with another. The Zowe Application Framework

provides constructs that facilitate this ability. For more information, see Application-to-application communication.

Config Service

A part of the Application Framework which allows plug-ins and the framework itself to store user configuration as JSON or binary
formats. The configuration is stored in a hierarchy in which company-wide and system-wide defaults can exist for all users, and users
may override the defaults if policy allows it. What can be stored and what can be overridden depends on plug-in definition and
administrative configuration.

https://micronaut.io/
https://gradle.org/
https://docs.zowe.org/stable/appendix/extend/extend-desktop/mvd-apptoappcommunication

Version: v2.16.x LTS

Zowe FAQ

Check out the following FAQs to learn more about the purpose and function of Zowe™.

® Zowe FAQ
e Zowe CLI FAQ
e Zowe Explorer FAQ

Zowe FAQ

What is Zowe?

¥ Click to hide answer

Zowe is an open source project within the Open Mainframe Project that is part of The Linux Foundation. The Zowe project

provides modern software interfaces on IBM z/OS to address the needs of a variety of modern users. These interfaces include a

new web graphical user interface, a script-able command-line interface, extensions to existing REST APIs, and new REST APIs on
z/OS.

Who is the target audience for using Zowe?

¥ Click to hide answer

Zowe technology can be used by a variety of mainframe IT and non-IT professionals. The target audience is primarily application

developers and system programmers, but the Zowe Application Framework is the basis for developing web browser interactions
with z/OS that can be used by anyone.

What language is Zowe written in?

¥ Click to hide answer

Zowe consists of several components. The primary languages are Java and JavaScript. Zowe CLI and Desktop are written in
TypeScript. ZSS is written in C, while the cross memory server is written in metal C.

What is the licensing for Zowe?

¥ Click to hide answer

Zowe source code is licensed under EPL2.0. For license text click here and for additional information click here.

https://www.openmainframeproject.org/
https://www.linuxfoundation.org/
https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.txt
https://www.eclipse.org/legal/epl-2.0/faq.php

In the simplest terms (taken from the FAQs above) - "...if you have modified EPL-2.0 licensed source code and you distribute that

code or binaries built from that code outside your company, you must make the source code available under the EPL-2.0."

Why is Zowe licensed using EPL2.0?

¥ Click to hide answer

The Open Mainframe Project wants to encourage adoption and innovation, and also let the community share new source code

across the Zowe ecosystem. The open source code can be used by anyone, provided that they adhere to the licensing terms.

What are some examples of how Zowe technology might be used by z/0S products and
applications?

¥ Click to hide answer

The Zowe Desktop (web user interface) can be used in many ways, such as to provide custom graphical dashboards that monitor
data for z/OS products and applications.

Zowe CLI can also be used in many ways, such as for simple job submission, data set manipulation, or for writing complex scripts

for use in mainframe-based DevOps pipelines.

The increased capabilities of RESTful APIs on z/OS allows APIs to be used in programmable ways to interact with z/OS services.

What is the best way to get started with Zowe?

¥ Click to hide answer

Zowe provides a convenience build that includes the components released-to-date, as well as IP being considered for
contribution, in an easy to install package on Zowe.org. The convenience build can be easily installed and the Zowe capabilities
seen in action.

To install the complete Zowe solution, see Installing Zowe.

To get up and running with the Zowe CLI component quickly, see Zowe CLI quick start.

What are the prerequisites for Zowe?

¥ Click to hide answer

Prerequisites vary by component used, but in most cases the primary prerequisites are Java and NodeJS on z/OS and the z/OS
Management Facility enabled and configured. For a complete list of software requirements listed by component, see System
requirements for z/OS components and System requirements for Zowe CLI.

https://zowe.org/
https://docs.zowe.org/stable/user-guide/installandconfig
https://docs.zowe.org/stable/getting-started/cli-getting-started
https://docs.zowe.org/stable/user-guide/systemrequirements-zos
https://docs.zowe.org/stable/user-guide/systemrequirements-cli

What's the difference between using Zowe with or without Docker?

~ Click to hide answer

Docker is a download option for Zowe that allows you to run certain Zowe server components outside of z/OS. The Docker image

contains the Zowe components that do not have the requirement of having to run on z/OS: The App server, API Mediation Layer,
and the USS/MVS/JES Explorers.

Configurating components with Docker is similar to the procedures you would follow without Docker, however tasks such as
installation and running with Docker are a bit different, as these tasks become Linux oriented, rather than utilizing Jobs and STCs.

@ NoTE

z/OS s still required when using the Docker image. Depending on which components of Zowe you use, you'll still need to
set up z/OS Management Facility as well as Zowe's ZSS and Cross memory servers.

Is the Zowe CLI packaged within the Zowe Docker download?

~ Click to hide answer

At this time, the Docker image referred to in this documentation contains only Zowe server components. It is possible to make a

Docker image that contains the Zowe CLI, so additional Zowe content, such as the CLI, may have Docker as a distribution option
later.

If you are interested in improvements such as this one, please be sure to express that interest to the Zowe community!

Does ZOWE support z/0S ZIIP processors?

¥ Click to hide answer

Only the parts of Zowe that involve Java code are ZIIP enabled. The APl Mediation Layer composed of the APl Gateway, Discovery
and Catalog servers along with any Java-based services that work with them such as the Jobs and Datasets servers are ZIIP
enabled. Also, the CLI and VSCode Explorer make large use of z/OSMF, which is Java so they are ZIIP enabled as well. More
details on portions of Zowe which are Java (ZIIP) enabled can be found here.

This leaves C and NodelJS code which are not ZIIP enabled, BUT, we have a tech preview available currently that allows execution

of Java as well as NodeJS code, on Linux or zLinux via Docker. With the tech preview, only the C code remains on z/OS, which is
not ZIIP enabled.

How is access security managed on z/0S?

https://docs.zowe.org/stable/getting-started/zowe-architecture#zowe-architecture
https://www.zowe.org/download.html

¥ Click to hide answer

Zowe components use typical z/OS System authorization facility (SAF) calls for security.

How is access to the Zowe open source managed?

¥ Click to hide answer

The source code for Zowe is maintained on an Open Mainframe Project GitHub server. Everyone has read access. "Committers"

on the project have authority to alter the source code to make fixes or enhancements. A list of Committers is documented in
Committers to the Zowe project.

How do | get involved in the open source development?

¥ Click to hide answer

The best way to get started is to join a Zowe Slack channel and/or email distribution list and begin learning about the current
capabilities, then contribute to future development.

For more information about emailing lists, community calendar, meeting minutes, and more, see the Zowe Community GitHub
repo.

For information and tutorials about extending Zowe with a new plug-in or application, see Extending on Zowe Docs.

Where can | submit an idea for a future enhancement to Zowe?

¥ Click to hide answer

Go to the Zowe Community ReadMe file for information on requesting a bug fix or enhancement. Members of the Zowe

community can then review your issue to post feedback or vote their support. Issues are continuously monitored by Zowe squads
for improvement ideas.

When will Zowe be completed?

¥ Click to hide answer

Zowe will continue to evolve in the coming years based on new ideas and new contributions from a growing community.

Can | try Zowe without a z/OS instance?

https://github.com/zowe/community/blob/master/COMMITTERS.md
https://slack.openmainframeproject.org/
https://github.com/zowe/community/blob/master/README.md
https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://github.com/zowe/community#submit-an-issue

¥ Click to hide answer

IBM has contributed a free hands-on tutorial for Zowe. Visit the Zowe Tutorial page to learn about adding new applications to
the Zowe Desktop and and how to enable communication with other Zowe components.

The Zowe community is also currently working to provide a vendor-neutral site for an open z/OS build and sandbox
environment.

Zowe is also compatible with IBM z/OSMF Lite for non-production use. For more information, see Configuring z/OSMF Lite on
Zowe Docs.

Zowe CLI FAQ

Why might | use Zowe CLI versus a traditional ISPF interface to perform mainframe tasks?

¥ Click to hide answer

For developers new to the mainframe, command-line interfaces might be more familiar than an ISPF interface. Zowe CLI lets
developers be productive from day-one by using familiar tools. Zowe CLI also lets developers write scripts that automate a

sequence of mainframe actions. The scripts can then be executed from off-platform automation tools such as Jenkins automation
server, or manually during development.

With what tools is Zowe CLI compatible?

¥ Click to hide answer

Zowe CLI is very flexible; developers can integrate with modern tools that work best for them. It can work in conjunction with
popular build and testing tools such as Gulp, Gradle, Mocha, and Junit. Zowe CLI runs on a variety of operating systems, including
Windows, macOS, and Linux. Zowe CLI scripts can be abstracted into automation tools such as Jenkins and TravisCl.

Where can | use the CLI?

.

¥ Click to hide answer

Usage Scenario Example

Interactive use, in a command

. Perform one-off tasks such as submitting a batch job.
prompt or bash terminal.

Interactive use, in an IDE terminal Download a data set, make local changes in your editor, then upload the changed

https://developer.ibm.com/tutorials/zowe-step-by-step-tutorial/
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf-lite

Usage Scenario Example

dataset back to the mainframe.

o)) . Write a shell script that submits a job, waits for the job to complete, then returns the
Scripting, to simplify repetitive tasks

output.
Scripting, for use in automated Add a script to your Jenkins (or other automation tool) pipeline to move artifacts
pipelines from a mainframe development system to a test system.

Which method should | use to install Zowe CLI?

¥ Click to hide answer

You can install Zowe CLI using the following methods:

¢ Local package installation: The local package method lets you install Zowe CLI from a zipped file that contains the core
application and all plug-ins. When you use the local package method, you can install Zowe CLI in an offline environment. We

recommend that you download the package and distribute it internally if your site does not have internet access.

e Online NPM registry: The online NPM (Node Package Manager) registry method unpacks all of the files that are necessary
to install Zowe CLI using the command line. When you use the online registry method, you need an internet connection to

install Zowe CLI

How can | get Zowe CLI to run faster?

¥ Click to hide answer

e Zowe CLI runs significantly faster when you run it in daemon mode. Daemon mode significantly improves the performance
of Zowe CLI commands by running Zowe CLI as a persistent background process. For more information, see Using daemon

mode.

How can | manage profiles for my projects and teams?

¥ Click to hide answer

e Zowe CLI V2 introduces team profiles. Using team profiles helps to improve the initial setup of Zowe CLI by making service

connection details easier to share and easier to store within projects. For more information, see Using team profiles.

Does Zowe CLI support multi-factor authentication (MFA)?

https://docs.zowe.org/stable/user-guide/cli-using-using-daemon-mode
https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles

¥ Click to hide answer

Yes, Zowe CLI supports MFA through the APl Mediation Layer. Without the APl ML, an MFA code can be used in place of a
password for testing single requests, but storing the MFA code for future requests does not work because the code expires

rapidly.

When mainframe services are routed through the API ML, users can log in to the APl ML gateway with an MFA code to obtain a
long-lived API ML authentication token that can be stored for future requests.

How can I get help with using Zowe CLI?

~ Click to hide answer

e You can get help for any command, action, or option in Zowe CLI by issuing the command 'zowe --help'.

e For information about the available commands in Zowe CLI, see Command Groups.

e |f you have questions, the Zowe Slack space is the place to ask our community!

How can | use Zowe CLI to automate mainframe actions?

¥ Click to hide answer

e You can automate a sequence of Zowe CLI commands by writing bash scripts. You can then run your scripts in an automation
server such as Jenkins. For example, you might write a script that moves your Cobol code to a mainframe test system before
another script runs the automated tests.

e Zowe CLI lets you manipulate data sets, submit jobs, provision test environments, and interact with mainframe systems and
source control management, all of which can help you develop robust continuous integration/delivery.

How can | contribute to Zowe CLI?

-

¥ Click to hide answer

As a developer, you can extend Zowe CLI in the following ways:
e Build a plug-in for Zowe CLI
e Contribute code to the core Zowe CLI

e Fix bugs in Zowe CLI or plug-in code, submit enhancement requests via GitHub issues, and raise your ideas with the
community in Slack.

https://docs.zowe.org/stable/getting-started/user-guide/cli-using-understanding-core-command-groups
https://openmainframeproject.slack.com/

Note: For more information, see Developing for Zowe CLI.

Zowe Explorer FAQ

Why might | use Zowe Explorer versus a traditional ISPF interface to perform mainframe tasks?

¥ Click to hide answer

The Zowe Explorer VSCode extension provides developers new to the mainframe with a modern Ul, allowing you to access and
work with the data set, USS, and job functionalities in a fast and streamlined manner. In addition, Zowe Explorer enables you to
work with Zowe CLI profiles and issue TSO/MVS commands.

How can | get started with Zowe Explorer?

¥ Click to hide answer

First of all, make sure you fulfill the following Zowe Explorer software requirements:

e Get access to z/OSMF.
e |nstall VSCode.

e Configure TSO/E address space services, z/OS data set, file REST interface, and z/OS jobs REST interface. For more
information, see z/OS Requirements.

e For development, install Node.js v14.0 or later.

Once the software requirements are fulfilled, create a Zowe Explorer profile.
Follow these steps:

1. Navigate to the explorer tree.
2. Click the + button next to the DATA SETS, USS, or JOBS bar.
3. Select the Create a New Connection to z/OS option.

4. Follow the instructions, and enter all required information to complete the profile creation.

You can also watch Getting_Started with Zowe Explorer to understand how to use the basic features of the extension.

Where can | use Zowe Explorer?

¥ Click to hide answer

You can use Zowe Explorer either in VSCode or in Theia. For more information about Zowe Explorer in Theia, see Developing for
Theia.

https://docs.zowe.org/stable/extend/extend-cli/cli-devTutorials#how-can-i-contribute
https://code.visualstudio.com/
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf#z-os-requirements
https://nodejs.org/en/download/
https://www.youtube.com/watch?v=G_WCsFZIWt4
https://marketplace.visualstudio.com/items?itemName=Zowe.vscode-extension-for-zowe
https://github.com/zowe/zowe-explorer-vscode/wiki/Developing-for-Theia

How do | get help with using Zowe Explorer?

¥ Click to hide answer

e Use the Zowe Explorer channel in Slack to ask the Zowe Explorer community for help.

e Open a question or issue directly in the Zowe Explorer GitHub repository.

How can | use Secure Credential Storage for Zowe Explorer?

¥ Click to hide answer

The Secure Credential Store Plug-in is no longer required for Zowe Explorer.

Secure credential storage functionality is now contained in the Zowe CLI core application, which stores credentials securely by
default.

What if Secure Credential Storage does not work in my environment?

¥ Click to hide answer

When an environment does not support Secure Credential Storage, it is possible to disable it. See Disabling Secure Credential
Storage of credentials for more information.

What if | do not want Zowe Explorer to store my credentials?

¥ Click to hide answer

Although not recommended in all cases, it is possible to disable Zowe Explorer's credential management functionality. See
Preventing Zowe Explorer from storing credentials for more information.

What types of profiles can | create for Zowe Explorer?

¥ Click to hide answer

Zowe Explorer V2 supports using Service Profiles, Base Profiles, and Team Profiles. For more information, see Using V1 profiles
and Team configurations in the Using Zowe CLI section.

Does Zowe Explorer support multi-factor authentication (MFA)?

https://openmainframeproject.slack.com/archives/CUVE37Z5F
https://github.com/zowe/zowe-explorer-vscode/issues
https://docs.zowe.org/stable/user-guide/ze-usage#disabling-secure-credential-storage-of-credentials
https://docs.zowe.org/stable/user-guide/ze-usage#preventing-zowe-explorer-from-storing-credentials
https://docs.zowe.org/stable/user-guide/cli-using-using-profiles-v1
https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles

¥ Click to hide answer

Yes, Zowe Explorer supports MFA through the APl Mediation Layer. Without the APl ML, an MFA code can be used in place of a

password for testing single requests, but storing the MFA code for future requests does not work because the code expires
rapidly.

When mainframe services are routed through the API ML, users can log in to the APl ML gateway with an MFA code to obtain a
long-lived API ML authentication token that can be stored for future requests.

Is it possible to change the detected language of a file or data set opened in Zowe Explorer?

~ Click to hide answer

Yes, you can configure Visual Studio Code to use a specific language for a particular file extension or data set qualifier. To set file
associations, see Add a file extension to a language.

How can | use FTP as my back-end service for Zowe Explorer?

¥ Click to hide answer

See the Zowe FTP extension README in GitHub for information about how to install FTP from the Visual Studio Code
Marketplace and use it as your back-end service for working with UNIX files.

How can | contribute to Zowe Explorer?

¥ Click to hide answer

As a developer, you may contribute to Zowe Explorer in the following ways:
e Build a Zowe Explorer extension.
e Contribute code to core Zowe Explorer.
e Fix bugs in Zowe Explorer, submit enhancement requests via GitHub issues, and raise your ideas with the community in Slack.

Note: For more information, see Extending Zowe Explorer.

Zowe Intelli) plug-in FAQ

Why might | use Zowe IntelliJ plug-in versus a traditional ISPF interface to perform mainframe
tasks?

https://code.visualstudio.com/docs/languages/overview#_add-a-file-extension-to-a-language
https://github.com/zowe/zowe-explorer-ftp-extension/#readme
https://github.com/zowe/zowe-explorer-vscode/wiki/Extending-Zowe-Explorer

¥ Click to hide answer

Zowe IntelliJ plug-in allows you to access and work with data sets, members and jobs directly from your IntelliJ-based IDE.

How can | get started with Zowe IntelliJ plug-in?

¥ Click to hide answer

Install the plug-in in your IntelliJ-based IDE directly from marketplace or download it from here.

Where can | use Zowe IntelliJ plug-in?

¥ Click to hide answer

You can use it in any IntelliJ-based IDE.

How do | get help with using Zowe IntelliJ plug-in?

¥ Click to hide answer

You can read detailed user guide and find any information you need here. Also, you can ask any questions in the Zowe Slack
channel #zowe-explorer-intellij.

How can | create, edit and delete z/OSMF connection?

~ Click to hide answer

To create a connection, expand plug-in panel on an IDE sidebar (on the right side of your screen) and press the "wrench"
pictogram, or go to File -> Settings (CTRL+ALT+S), select Zowe Explorer (Zowe IntelliJ plugin) and then switch to the z/OSMF

uo,n

connection tab. Press the “+" button and fill inn all necessary fields.

How can | contribute to Zowe IntelliJ plug-in?

¥ Click to hide answer

If you have something to introduce but there is no related issue in the project repo, then you can either create the issue by
yourself or contact us to help you with it. See more information in the CONTRIBUTION.md file.

https://plugins.jetbrains.com/plugin/18688-zowe-explorer
https://plugins.jetbrains.com/plugin/18688-zowe-explorer/user-guide
https://openmainframeproject.slack.com/archives/C020BGPSU0M
https://github.com/zowe/zowe-explorer-intellij/blob/main/CONTRIBUTING.md

Version: v2.16.x LTS

Zowe V2 FAQ

Where can | find the V1 and V2 LTS conformance criteria?

The Zowe Squads have prepared XLS spreadsheets with conformance criteria for all Zowe extensions including: CLI, APIs, App
Framework, and Explorer for VS Code. The spreadsheets clearly show the prior / V1 criteria alongside the new / V2 criteria. Please be
aware, there are additions, deletions, and CHANGES to the criteria. In some cases the change is simply that a BEST PRACTICE has been
deemed REQUIRED. Use the included fill color key to identify new changes for V2, reworded changes, or changes from V1 removed in

V2. See the Changes to the Conformance Criteria section at Zowe.org/vNext.

Whats the difference between "server.json" and "example-zowe.yaml"?

The previous Zowe V1.x config, "server.json", has been removed from V2 and has been replaced with a new yaml configuration file.
The app server will no longer support instances/workspaces which only contain a "server.json" config file and will fallback to a default

configuration. In addition to the app server, ZSS will no longer support "server.json".

The yaml Zowe configuration file contains configurations for the setup, install, and initialization of Zowe as well as for individual
components. This file allows users to customize dataset names, security related configs, certificate setup/config, job name & job prefix,
various runtime configs, high availability config, as well as individual component configurations.

For more information on Zowe setup and the yaml configuration, run the following command in the command line:

zwe init --help

What are the new default ports?

Four of the default Zowe ports have changed: the app server, zss, the jobs API, and the files API. The new default app server port is
7556 (previously 8544) and the new zss port is 7557 (previously 8542). The new jobs API port is 7558 (previously 8545) and the new
files APl is 7559 (previously 8547). The JES/USS/MVS Explorer Ul servers have been removed and thus no longer require port
configurations.

How do | access Zowe through the APl Mediation Layer in V2?

In pervious V1.X versions of Zowe, the desktop could be accessed via the APl Medation Layer by navigating to
https://${zowe.externalDomains[@]}:{zowe.externalPort}//ui/vl/z1ux. In Zowe V2, the route to access the desktop has
changed to https://${zowe.externalDomains[@]}:{zowe.externalPort}/z1lux/ui/v1. Such routing structure is applicable to
other clients connected to the APl Gateway. For example, the API Catalog may be accessed via

https://${zowe.externalDomains[0]}:{zowe.externalPort}/apicatalog/ui/v1.

What new frameworks are supported in V2?

The Zowe app framework now supports the more modern Angular 12, Corejs 3 and Typescript 4.

https://www.zowe.org/vnext#conformance-changes

Why aren't the explorers appearing on my desktop anymore?

By default, the explorers will not longer appear on the desktop if the instance is not configured to use the APl Mediation Layer.

Version: v2.16.x LTS

Zowe V2 office hours videos

Watch the series of Zowe office hours videos to learn more about the new features and enhancements in Zowe Version 2 release.

Office hours for Zowe extenders

The following videos walk you through Zowe V2 updates from an extender's perspective. You can start with general information and

dive deeper in other sections for more details.

General information

Zowe V2 Office Hou... Zowe V2 Office Hou... Zowe V2 Office Hc

General information Updates for extenders Wrap-up session

Zowe component updates

Zowe V2 Offic... Zowe V2 Offic... Zowe V2 Offic... Zo\

Zowe CLI Zowe AP| Mediation Layer Zowe Application Framework Zowe

Installation and V2 conformance

https://www.youtube.com/watch?v=sd634LJtKIk
https://www.youtube.com/watch?v=kIfRwjFaa60
https://www.youtube.com/watch?v=0POzncbTmx4
https://www.youtube.com/watch?v=kI9JpTP6IUg
https://www.youtube.com/watch?v=0POzncbTmx4
https://www.youtube.com/watch?v=wKAhkGQ2HOQ
https://www.youtube.com/watch?v=Q3cd1cOD2Qw

Zowe V2 Office Hours (Zowe Extenders) - SS...

Zowe V2 Office Hours (Zow

SSO and APIML SSO Conformance

Office hours for Zowe consumers

Systems and installatio

The following office hours walk you through Zowe V2 updates from a consumer's perspective. Watch these videos to learn more

about the enhancements that are introduced to each core component.

Zowe component updates

Zowe V2 Offic... Zowe V2 Offic...

Zowe V2 Offic... Zo\

Zowe CLI Zowe API Mediation Layer

Zowe Application Framework Zowe

https://www.youtube.com/watch?v=6bYhh1RQuAo
https://www.youtube.com/watch?v=LjufWJDYcjg
https://www.youtube.com/watch?v=ih52PzPncrw
https://www.youtube.com/watch?v=cH9SpWknHsY
https://www.youtube.com/watch?v=1BFGtv95eC0
https://www.youtube.com/watch?v=44klrbtNd-8

Version: v2.16.x LTS

Zowe CLI quick start

Get started with Zowe™ CLI quickly and easily.

This article presumes that your role is that of a systems administrator or you possess prerequisite knowledge of command-line tools
and writing scripts. If you prefer more detailed instructions, see Installing Zowe CLI.

Installing

The following topics describe the Zowe CLI system requirements and the various methods to use to install Zowe CLI.

Software Requirements

Before you install Zowe CLI, download and install Node.js and npm. Use an LTS version of Nodejs that is compatible with your version

of npm. For a list of compatible versions, see Node.js Previous Releases.

(Linux only): On headless Linux, follow the procedure documented in the SCS plug-in Readme.

Installing Zowe CLI core from public npm

Issue the following command to install the core CLI.

Installing CLI plug-ins
The command installs most open-source plug-ins, but the IBM Db2 plug-in requires additional configuration to install.

For more information, see Installing plug-ins.

Issuing your first commands

Issue zowe --help to display full command help. Append --help (alias -h) to any command to see available command actions and

options.
Optionally, you can view the Zowe CLI web help in a browser window. For more information, see Displaying help.

All Zowe CLI commands start with zowe followed by the name of the core command group. For example, zowe plugins -h.To
interact with the mainframe, type zowe followed by a command group, action, and object. Use options to specify your connection

details such as password and system name.

Listing all data sets under a high-level qualifier (HLQ)

Example:

Downloading a partitioned data-set (PDS) member to local file

Example:

https://docs.zowe.org/stable/user-guide/cli-installcli
https://nodejs.org/en/download/releases/
https://github.com/zowe/zowe-cli-scs-plugin/blob/master/README.md#software-requirements
https://docs.zowe.org/stable/user-guide/cli-db2plugin#installing
https://docs.zowe.org/stable/user-guide/cli-installplugins
https://docs.zowe.org/stable/user-guide/cli-using-displaying-help
https://docs.zowe.org/stable/user-guide/cli-using-understanding-core-command-groups

See Understanding core command groups for a list of available functionality.

Team profiles

Zowe CLI V2-LTS now supports team profiles. The process of setting up team profiles is simple and can be rolled out easily accross
your organization. We highly recommend that you configure team profiles to support your Zowe CLI implementation. For more
information, see Using team profiles.

Using profiles

Zowe profiles let you store configuration details such as username, password, host, and port for a mainframe system. Switch between

profiles to quickly target different subsystems and avoid typing connection details on every command.

Profile types

Most command groups require a zosmf-profile, but some plug-ins add their own profile types. For example, the CICS plug-in has a

cics-profile. The profile type that a command requires is defined in the PROFILE OPTIONS section of the help response.

Tip: The first zosmf profile that you create becomes your default profile. If you don't specify any options on a command, the default

profile is used. Issue zowe profiles -h to learn about listing profiles and setting defaults.

Creating zosmf profiles
Notes:

e The port defaults to 443 if you omit the --port option. Specify a different port if your host system does not use port 443.

e |f z/OSMF is configured for high availability in Sysplex, create the CLI zosmf-profile with DVIPA address/hostname to ensure
availability of REST services. For more information, see Configuring z/OSMF high availability in Sysplex.

Using zosmf profiles

For detailed information about issuing commands, using profiles, and more, see Using CLI.

Writing scripts

You can write Zowe CLI scripts to streamline your daily development processes or conduct mainframe actions from an off-platform
automation tool such as Jenkins or TravisCl.

Example:

You want to delete a list of temporary datasets. Use Zowe CLI to download the list, loop through the list, and delete each data set

using the zowe zos-files delete command.

For more information, see Writing scripts.

https://docs.zowe.org/stable/user-guide/cli-using-understanding-core-command-groups
https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf-ha
https://docs.zowe.org/stable/user-guide/cli-using-usingcli
https://docs.zowe.org/stable/user-guide/cli-using-writing-scripts

Next steps

You successfully installed Zowe CLI, issued your first commands, and wrote a simple script! Next, you might want to perform the

following tasks:

e [ssue the zowe --help command to explore the product functionality, or review the online web help.

e |earn how to configure Zowe CLI run Zowe CLI in daemon mode. Daemon mode significantly improves the performance of Zowe
CLI commands by running Zowe CLI as a persistent background process.

e |earn about configuring environment variables to store configuration options.

e Learn about integrating with APl Mediation Layer.

e |earn about how to write scripts and integrate them with automation server, such as Jenkins.

e See what plug-ins are available for the CLI.

e learn about developing for the CLI (contributing to core and developing plug-ins).

https://docs.zowe.org/stable/user-guide/cli-using-displaying-help
https://docs.zowe.org/stable/user-guide/cli-using-using-daemon-mode
https://docs.zowe.org/stable/user-guide/cli-configuringcli-ev
https://docs.zowe.org/stable/user-guide/cli-using-integrating-apiml
https://docs.zowe.org/stable/user-guide/cli-using-writing-scripts
https://docs.zowe.org/stable/user-guide/cli-extending
https://docs.zowe.org/stable/extend/extend-cli/cli-devTutorials

Version: v2.16.x LTS

Migrating Zowe server component from V1 to V2

This doc guides you through migrating an existing Zowe server component from version 1 to version 2.
To make Zowe server component compatible with Zowe version 2, you must update the following configurations.

e Component manifest
e lifecycle scripts
® Environment variables

e Packaging one component deliverable for both Zowe v1 and v2

Component manifest

In Zowe v2, the component must define a manifest file and package it into the extension's root directory. This manifest file is used by
Zowe to understand how this component should be installed, configured, and started. For detailed information of this file, see Server
Component Manifest File Reference.

Lifecycle scripts

In Zowe V2, lifecycle scripts can be located anywhere in your component directory. However, you must explicitly define them in the

commands section of the component manifest file.

Environment variables
Zowe v1 and v2 environment variables are not exact match. There are the following differences:

e Some variables in Zowe v1 are removed in v2.
e Some are separated into two or more variables.

e Zowe v2 defines more configuration options than v1.

Review the following table for a detailed mapping of Zowe v1 and v2 variables.

Zowe v1 Variable Zowe v2 YAML Configuration
APIML_ALLOW_ENCODED_SLASHES components.gateway.apiml.service.allowEncodedSlashes ZWE
APIML_CORS_ENABLED components.gateway.apiml.service.corsEnabled ZWE

APIML_DEBUG_MODE_ENABLED components.gateway.debug, etc ZWE

https://docs.zowe.org/stable/appendix/server-component-manifest

Zowe v1 Variable

APIML_ENABLE_SSO

APIML_GATEWAY_EXTERNAL_MAPPER

APIML_GATEWAY_INTERNAL_HOST

APIML_GATEWAY_INTERNAL_PORT

APIML_GATEWAY_TIMEOUT_MILLIS

APIML_MAX_CONNECTIONS_PER_ROUTE

APIML_MAX_TOTAL_CONNECTIONS

APIML_PREFER_IP_ADDRESS

APIML_SECURITY_AUTH_PROVIDER

APIML_SECURITY_AUTHORIZATION_ENDPOINT_URL

APIML_SECURITY_X509_ENABLED

APIML_SECURITY_ZOSMF_APPLID

CATALOG_PORT

DISCOVERY_PORT

EXTERNAL_CERTIFICATE_AUTHORITIES

EXTERNAL_COMPONENTS

FILES_API_PORT

GATEWAY_PORT

Zowe v2 YAML Configuration

Removed in v2

components.gateway.

Not configurable in v2

components.gateway.

components.gateway.

components.gateway.

components.gateway.

Removed in v2

components.gateway.

components.gateway.

components.gateway.

zOSMF . applId

apiml.security.x509.externalMapperurl

server.internal.port

apiml.gateway.timeoutMillis

server.maxConnectionsPerRoute

server.maxTotalConnections

apiml.security.auth.provider

apiml.security.authorization.endpoint.url

apiml.security.x509.enabled

components.api-catalog.port

components.discovery.port

zowe.certificate.pem.certificateAuthorities

Removed in v2

components.files-api.port

components.gateway.

port

Renr

ZWE

Not

ZWE

ZWE

ZWE

ZWE

Renr

ZWE

ZWE

ZWE

Z0S

ZWE

ZWE

ZWE

Renr

ZWE

ZWE

Zowe v1 Variable

INSTANCE_DIR

JAVA_HOME

JES_EXPLORER_UI_PORT

JOBS_API_PORT

KEY_ALIAS

KEYSTORE_CERTIFICATE_AUTHORITY

KEYSTORE_CERTIFICATE

KEYSTORE_DIRECTORY

KEYSTORE_KEY

KEYSTORE_PASSWORD

KEYSTORE_TYPE

KEYSTORE

LAUNCH_COMPONENT_GROUPS

MVS_EXPLORER_UI_PORT

PKCS11_TOKEN_LABEL

PKCS11_TOKEN_NAME

Zowe v2 YAML Configuration

Removed in v2

java.home

Removed in v2

components.jobs-api.port

zowe.certificate.keystore.alias

zowe.certificate.pem.certificateAuthorities

zowe.certificate.pem.certificate

zowe.setup.certificate.pkcsl2.directory

zowe.certificate.pem.key

zowe.certificate.keystore.password and

zowe.certificate.truststore.password

zowe.certificate.keystore.type and

zowe.certificate.truststore.type

zowe.certificate.keystore.file

Removed in v2

Removed in v2

Removed in v2

Removed in v2

ZWE

JAV

Renr

ZWE

ZWE

ZWE

ZWE

ZWE

ZWE

ZWE
ZWE

ZWE
ZWE

ZWE

Remr

Renr

Renr

Renr

Zowe v1 Variable

ROOT_DIR

SKIP_NODE

STATIC_DEF_CONFIG_DIR

TRUSTSTORE

USS_EXPLORER_UI_PORT

ZOSMF_HOST

ZOSMF_PORT

ZOWE_APIM_NONSTRICT_VERIFY_CERTIFICATES

ZOWE_APIM_VERIFY_CERTIFICATES

ZOWE_EXPLORER_FRAME_ANCESTORS

ZOWE_EXPLORER_HOST

ZOWE_INSTANCE

ZOWE_IP_ADDRESS

ZOWE_PREFIX

Zowe v2 YAML Configuration

zowe.runtimeDirectory

Removed in v2

zowe.certificate.truststore.file

Removed in v2

zOSMF . host

zOSMF . port

zowe.verifyCertificates

zowe.verifyCertificates

Removed in v2

zowe.externalDomains or haInstances.<ha-instance>.hostname

Removed in v2

Removed in v2

zowe.job.prefix

ZWE

Renr

ZWE

ZWE

Renr

Z0S

Z0S

ZWE

ZWE

Remr

ZWE
ZWE

insi

Renr

Renr

ZWE

Zowe v1 Variable

ZOWE_ZLUX_SECURITY_TYPE

ZOWE_ZLUX_SERVER_HTTPS_PORT

ZOWE_ZLUX_SSH_PORT

ZOWE_ZLUX_TELNET_PORT

ZOWE_ZSS_SERVER_PORT

ZOWE_ZSS_SERVER_TLS

ZOWE_ZSS_XMEM_SERVER_NAME

ZWE_CACHING_EVICTION_STRATEGY

ZWE_CACHING_SERVICE_PERSISTENT

ZWE_CACHING_SERVICE_PORT

ZWE_CACHING_SERVICE_VSAM_DATASET

ZWE_CACHING_STORAGE_SIZE

ZWE_DISCOVERY_SERVICES_LIST

ZWE_DISCOVERY_SERVICES_REPLICAS

ZWE_EXTENSION_DIR

ZWE_EXTERNAL_HOSTS

ZWE_EXTERNAL_PORT

ZWE_LAUNCH_COMPONENTS

components.

components.

components.

components.

components.

components.

Zowe v2 YAML Configuration

caching-service.

caching-service.

caching-service.

caching-service.

caching-service.

storage.

storage.

port

storage.

storage.

discovery.replicas

zowe.extensionDirectory

zowe.externalDomains

zowe.externalPort

evictionStrategy

mode

vsam.name

size

Combined information of components.<component>.enabled with

value of true

ZWE

ZWE

ZWE

ZWE

ZWE

ZWE

ZWE

ZWE

ZWE

ZWE

ZWE

Zowe v1 Variable

ZWE_LOG_LEVEL_ZWELS

ZWEAD_EXTERNAL_STATIC_DEF_DIRECTORIES

ZWES_ZIS_LOADLIB

ZWES_ZIS_PARMLIB_MEMBER

ZWES_ZIS_PARMLIB

ZWES_ZIS_PLUGINLIB

Packaging one component deliverable for both Zowe v1 and v2

Zowe v2 YAML Configuration

zowe.launchScript.loglLevel

Removed in v2

zowe.setup.dataset.authLoadlib

zowe.setup.dataset.parmlib

zowe.setup.dataset.authPluginlLib

ZWE

Renr

ZWE

ZWE

ZWE

It is recommended that you create a dedicated package of extensions for Zowe v2, which is the most straight-forward way to address

all of the breaking changes introduced in v2. We understand that this method presents the challenge of maintaining two sets of

packages. If you prefer not to maintain two sets of packages, it's still possible to maintain one version of an extension which works for

both Zowe v1 and v2. However, the lifecycle code will be complicated and in this case, comprehensive testing should be performed.

A\ cAuTION

The Zowe v2 App Framework desktop is upgraded from Angular version 6 to angular version 12 for support and security -

websites have a "1 version of a library" limitation. This means that plug-ins dependent upon Angular must be coded for either v6

or v12 [not both] thus the single version approach is not applicable.

If the lifecycle scripts are the main concern, the following steps outline requirements and recommendations for the single version

approach:

e Packaging manifest.yaml is required. This is a hard requirement for Zowe v2. If you define lifecycle scripts with default names,

for example, use bin/start.sh as commands.start, it should work for v1.

e Revisit all environment variables used in the lifecycle scripts and apply fallback variables. For example, if you use $ROOT_DIR in

Zowe V1, this should be changed to ${ZWE_zowe_runtimeDirectory:-${ROOT_DIR}} to make it compatible with both versions.
Other variables like $EXPLORER_HOST should be changed to ${ZWE_haInstance_hostname:-${EXPLORER_HOST}} or
${ZWE_externalDomains_0:-${EXPLORER_HOST}} based on purpose.

In Zowe v2, we recommend you to define extension configurations in the manifestyaml configs section and use
${ZWE_configs_*} variables to access them. This feature does not exist in Zowe v1. So if you use ${zZWE_configs_*} variables, it

should fall back to the matching environment variable used in v1.

e In Zowe v2, we recommend you to define a commands.install lifecycle script to handle extension installation. This lifecycle script
will be executed by zwe components install.In v1, this also exists if you use the zowe-install-components.sh utility to install
a Zowe extension. So if you want one extension package to work for both Zowe v1 and v2, this install lifecycle script should also
be compatible with both v1 and v2.

® Anew v2 variable ${zWE_VERSION} may help you determine the Zowe version number. This variable does not exist in Zowe v1. By
knowing the Zowe version, the lifecycle scripts can implement logic to source v1 or v2 dedicated scripts to avoid handling
fallbacks in the same script. This could help avoid complicated compatibility version checks, and it could be easier in the future if

you decide to drop Zowe v1.

Version: v2.16.x LTS

Zowe learning resources

Learn more about Zowe from these blog posts, videos, and other resources.

Blogs

e Zowe blogs on Medium

e Zowe blogs on Open Mainframe Project website

Want to contribute a blog? Details for how to contribute to the Zowe blogs on Medium site are at Zowe Blog Guidelines.

Videos

Zowe VS Code Extension

As well as Zowe videos owned and managed by the community, there are a number of external youtubers who host Zowe related

content.

e Zowe Demos playlist from Bill Pereira

® Mainframe Bytes channel from Jessielaine Punongbayan

Webinars

Find out what's happening with Zowe in the Zowe Quarterly Update Webinar Series.

e Zowe Quarterly Update Webinar: October 2021
e Zowe Quarterly Update Webinar: July 2021
e Zowe Quarterly Update Webinar: April 2021

https://medium.com/zowe
https://www.openmainframeproject.org/category/blog/zowe
https://medium.com/zowe
https://github.com/zowe/community/blob/master/blogging/blog_guidelines.md
https://www.youtube.com/watch?list=PL8REpLGaY9QE_9d57tw3KQdwSVLKuTpUZ&v=la1_Ss27fn8
https://www.youtube.com/embed?listType=playlist&list=PL8REpLGaY9QE_9d57tw3KQdwSVLKuTpUZ
https://www.youtube.com/playlist?list=PLM85SdWDWtebJ13Kww8rxKlDlWe72D7b3
https://www.youtube.com/channel/UCZrvxFwT1GpvJuFRyqc5uWg
https://youtu.be/b0Xo6WIy3vc
https://youtu.be/T3Z4hMwElII
https://youtu.be/9rQCcZGVDzQ

e Zowe Quarterly Update Webinar: January 2021
e Zowe Quarterly Update Webinar: October 2020

The OMP Youtube channel also offers other webinars about Zowe.

® Treat Yourself to a Guided, Comprehensive Tour of Zowe Desktop Applications
e Zowe Webinar Feb. 22, 2019

® Open Mainframe Project Webinar: Zowe Virtual Hackathon

Community
Join us on Slack

e Slack invite link

® Introduction to Zowe Slack channels
Learn more about the community
e Zowe community GitHub repo

Find out information about Zowe sub-projects, GitHub repos, mailing lists, community meeting minutes, contribution guidelines,

and so on.
Connect with the community through meetings
e Zowe meeting calendar

You can join one of the Zowe meetings to get latest Zowe updates and get involved in different squads and initiatives.

Training
Courses

e Zowe Fundamentals

Interskill Learning offers a free training course that introduces the components that comprise Zowe and the benefits of using
Zowe and how its capabilities can be extended.

Trials
e Zowe trial

The Zowe trial hosted by IBM is a fully configured z/OS environment with Zowe preinstalled and set up along with a set of
integrated easy-to-follow tutorials that walk you through the basics of Zowe and gives you hands-on experience of extending

Zowe. This no-charge trial is available in two hours for three days.

e Get started with the Zowe Web Ul

https://youtu.be/ZEwd8wZvbIw
https://youtu.be/GbAFO5vzBhw
https://www.youtube.com/channel/UC-WTXQQtz2m5iTflJLK59aw/videos
https://youtu.be/cbEVbcsaGCs
https://youtu.be/XixEltbRmds
https://youtu.be/zIPzaQK2bfU
https://slack.openmainframeproject.org/
https://github.com/zowe/community/blob/master/README.md#slack
https://github.com/zowe/community/blob/master/README.md
https://lists.openmainframeproject.org/g/zowe-dev/calendar
https://interskill.com/course/zowe-training/
https://early-access.ibm.com/software/support/trial/cst/welcomepage.wss?siteId=936&tabId=2216&w=1&mhsrc=ibmsearch_a&mhq=Zowe%20trial
https://developer.ibm.com/components/ibmz/tutorials/zowe-step-by-step-tutorial/

This online tutorial hosted by IBM guides you to add new apps to the Zowe Web Ul. It provides a public hosted Zowe instance
that allows you to perform the steps in a z/OS environment.

Version: v2.16.x LTS

Installing Zowe

The installation of Zowe™ consists of the following processes:
¢ |Installation of the Zowe server-side components.
You can install the components either on z/OS only or you can install the components both on z/OS and on Docker.
¢ |Installation of Zowe client-side components.
You can install Zowe CLI or Zowe Explorer, a Visual Studio Code extension powered by Zowe CLI.

The Zowe server components provide a web desktop that runs a number of applications such as APl Mediation Layer that includes the
Single Sign-on (SSO) capability, organization of the multiple Zowe servers under a single website, and other useful features for z/OS

developers.

Because Zowe is a set of components, before installing Zowe, use this guide to determine which components you want to install and

where you want to install them.
Consider the following scenarios:
e [f you plan to use Zowe CLI on PC only, you may not need to install the Zowe server components.

Note: Some CLI plug-ins require the installation of components on z/OS. If you plan to use core Zowe CLI groups from your PC,
the z/OS you connect to does not require any components of Zowe to be installed on z/OS, unless you want to take advantage of

advanced authentication methods such as single sign-on or multi-factor authentication.

e |f you use the Docker technical preview to run the Linux parts of Zowe in a container, you only need to configure the Zowe z/OS

component to start the ZSS server.

Version: v2.16.x LTS

Zowe server-side installation overview

Installation of Zowe™ server-side components on z/OS, consists of the following two parts:

e Zowe runtime

e Zowe Cross Memory Server (ZIS)

Zowe runtime
The Zowe runtime consists of the following three components:

e Zowe Application Framework
Zowe Application Framework modernizes and simplifies working on the mainframe via a web visual interface. Functionality is
provided through apps and a desktop user experience, which is referred to as the Zowe Desktop. Base functionality includes apps
to work with JES, MVS Data Sets, Unix System Services, as well as a 3270 Terminal, Virtual Terminal, and an Editor.

e Zowe APl Mediation Layer (APl ML)
Zowe API ML provides a reverse proxy and enables REST APIs by providing a single point of access for mainframe service REST
APIs like MVS Data Sets, JES, as well as working with z/ZOSMF. Zowe APl ML has dynamic discovery capability for these services
and Gateway is also responsible for generating the authentication token used to provide single sign-on (SSO) functionality.

e Z System Services Server (ZSS)
ZSS serves as one of the primary, authenticated backends that communicates with z/OS and works closely with the Zowe Cross
Memory Server (ZIS). ZSS provides Zowe with a number of APIs including z/OS Unix files and data sets, control of the plug-ins
and services lifecycle, security management, and other APIs. The Zowe Desktop delegates a number of services to ZSS which can

then be accessed through the default http port 7557. ZSS is written in C and uses native calls to z/OS to provide its services.

The Zowe Cross Memory Server (ZIS)
After the installation of Zowe runtime, install the Zowe Cross Memory Server (ZIS).

The Zowe Cross Memory Server, also referred to as Zowe Interprocess Services (ZIS) is an APF authorized server application that
provides privileged services to Zowe in a secure manner. For security reasons, ZIS is not an HTTP server. Instead, this server has a trust
relationship with ZSS.

Other Zowe components can work through ZSS to handle z/OS data that would otherwise be unavailable or where access to these
data could be vulnerable to security breaches.

Roles and responsibilities for server-side component installation

To avoid interuptions in the installation of Zowe™ server-side components, it is useful to be aware of the roles required to perform
various tasks in the installation and configuration process.

Security administrator

To configure Zowe security for production environments, it is likely that your organization's security administrator will be required to
perform specific tasks. For more information, see Addressing security requirements.

Storage administrator

Before starting installation, notify your storage administrator to reserve the required space for USS, directory storage space, and any

other storage requrements to install Zowe. For more information, see Addressing storage requirements.

Network administrator

Notify your organization's network administrator to assign port numbers, reserve these port numbers, and arrange them for you. For

more information about network setup, see Addressing network requirements.

System programmer

In most cases, the system programmer performs the Zowe installation and configuration, and starts Zowe. Ensure that your system
programmers have general knowledge about SMP/E, z/OSMF workflows, and regular maintanance procedures. In many cases, the
system programmer also prepares jobs for other administrators.

End-to-end installation

The following diagram illustrates the full ecosystem for installing Zowe server-side components for z/OS.

https://docs.zowe.org/stable/user-guide/address-security-requirements#tasks-performed-by-your-security-administrator
https://docs.zowe.org/stable/user-guide/address-storage-requirements
https://docs.zowe.org/stable/user-guide/address-network-requirements

Stage 1:
Plan and prepare

Install through SMP/E, PSWI, and convenience build | Install through containerization build

Plan and prepare for Prepare for

the installation containerization build

Stage 2:

Stage 2:
Install the Zowe runtime Download Zowe's containers
Start the installation *

B
containers

What is you

preferred

installation method?, Configuration sampies Centainer
(recommended) images
SMPYE build Convenience build Portable software instance
(PSWI)
|$Dowr\loan the Zowe SMPIE build | | ¥, Download the convenience build | | &, Downioad the PSWI build | A 4 v

& Download amole: |

A 4 A Stage 3:
| "DNiA Zowe nrtine tom s | | :'. Install Zowe's containers - an automatic pracess for both downloading methods.
@ build f’. Daace 0 +

00se a method 1o
install the Zowe
MP/E build

- Stage 4:
@ W“mfﬂ ! J’L% Configuring Zows container envirenment

O creals namespace and service account
Stage 3: a
Configure the Zowe runtime and start Zowe

' ’
2/0SMF [3 comate peraaiens voue Clan even
JCL, zwe init command hoose
medhod workflow *
Z
v
) Create and modify Confighaps and Secrats
© (One-time setup per z/OS environment) S Grant ysers permission ip access (Manually greating Gonfightaps and Secrets)
| v
{One-time setup per ZOS environment) = =
{ntialize Zowe with securty confirations usinapue o RO Bonp Sk P00 o ypert) &l
| Stage 5:
4

Stage Start Zowe containers
Customize the configuration

Apply the deployment files to
start Zowe containers

@ Verify Zowe containers are started

[Enable Configuration Manager mode

Stage 5:
Install and manage extensions

\ 4 o0y

&
Optional) Monitor Zowe containers
| al lns&au.im.manasmmml

(©) Verify that Zowe is installed and configured correctly

Stage 1: Prepare for installation

Begin the installation process by familiarizing yourself with the following topics which are covered in the section Preparing for
installation:

e Zowe's hardware and software requirements
e The zwe utility used for installing, configuring, and managing Zowe

¢ The configuration file used for Zowe, zowe.yaml

Stage 2: Installing the Zowe z/0OS runtime

|

https://docs.zowe.org/stable/user-guide/installandconfig

Stage 2:
Install the Zowe runtime

Start the installation

SMP/E build What is your preferred Portable software instance (PSWI)
installation method?

Convenience build

Download the Zowe SMP/E build Download the convenience build Download the PSWI build

! !

Install the Zowe SMP/E Install the Zowe SMP/E build Install Zowe runtime from a Install Zowe from a Portable
build using JCLs with zZOSMF workflow convenience build Software Instance

1. Ensure that the software requirements described in Preparing for installation are met.
2. Choose your method for installing Zowe on z/OS.

Each method to perform Zowe server-side component installation contains the same contents. Choose the method based on your

needs. The Zowe z/OS binaries are distributed in the following formats:

o Convenience build
The Zowe z/OS binaries are packaged as a PAX file which is a full product install. Transfer these binaries to a USS directory

and expand the contents. Use the zwe command zwe install to extract a number of PDS members which contain load

modules, JCL scripts, and PARMLIB entries.

o SMP/E build
Zowe z/OS binaries are packaged as the following files that you can download. You install this build through SMP/E.

m A pax.Z file, which contains an archive (compressed copy) of the FMIDs to be installed.

= A readme file, which contains a sample job to decompress the pax.Z file, transform this file into a format that SMP/E can

process, and invoke SMP/E to extract and expand the compressed SMP/E input data sets.

o Portable Software Instance (PSWI)
You can acquire and install the Zowe z/OS PAX file as a portable software instance (PSWI) using z/OSMF.

@ NoTE

While the procedures to obtain and install the convenience build, SMP/E build or PSWI are different, the procedure to configure

a Zowe runtime is the same, and does not depend on how the build is obtained and installed.

1. Obtain and install the Zowe build.

o For more information about how to obtain and install the convenience build, see Installing Zowe runtime from a convenience
build.

https://docs.zowe.org/stable/user-guide/systemrequirements-zos
https://docs.zowe.org/stable/user-guide/installandconfig#zwe-server-command
https://docs.zowe.org/stable/user-guide/install-zowe-zos-convenience-build

o For more information about how to obtain and install the SMP/E build, see Installing Zowe SMP/E overview.

o For more information about how to obtain and install the PSWI, see Installing Zowe from a Portable Software Instance.

Successful installation of either a convenience build or an SMP/E build creates a zFS folder that contains the following artifacts:

The unconfigured Zowe runtime directory

The utility library SZWEEXEC that contains utilities

The SAMPLIB library SZWESAMP that contains sample members

The load library SZWEAUTH that contains load modules

The steps to prepare the z/OS environment to launch Zowe are the same for all installation methods.

Stage 3: Configuring the Zowe z/0S runtime

Stage 3:
Configure Zowe z/0S runtime

JCL, zwe init command z/OSMF workflow

Choose a method to

l configure Zowe
A 4
Initialize Zowe manually using zwe init command group Configure Zowe with zZOSMF Workflows
Configure Zowe certificates Set up Zowe certificates using workflows

!

Configure the z/OS system for Zowe

v

Verify that Zowe is installed and configured correctly

Choose from the following methods to configure the Zowe runtime:

e Use a combination of JCL and the zwe command zwe init

e Use z/OSMF Workflows

Q e

We recommend you open the links to this configuration procedure in new tabs.

The steps to initialize the system are the same independent of whether you obtained Zowe from a .pax convenience build, or an
SMP/E distribution.

https://docs.zowe.org/stable/user-guide/install-zowe-smpe-overview
https://docs.zowe.org/stable/user-guide/install-zowe-pswi
https://docs.zowe.org/stable/user-guide/initialize-zos-system
https://docs.zowe.org/stable/user-guide/configure-zowe-zosmf-workflow

@ NoTE

The zwe init command runs the subcommands in sequence automatically. You can choose to run the subcommands one by
one to define each step based on your need. If you encounter any failures with zwe init command, you can pick up the failed

subcommands step specifically and rerun this subcommand.

The following procedure outlines the steps to configure the Zowe z/OS runtime, and the corresponding zwe init subcommands.

1. Prepare the zowe.yaml configuration file if the file does not already exist.
2. Prepare the custom MVS data sets. Copy the data sets provided with Zowe to custom data sets.

(Uses the command zwe init mvs)

3. Initialize Zowe security configurations. Create the user IDs and security manager settings.

(Uses the command zwe init security)

@ NoTE

If Zowe has already been launched on a z/OS system from a previous release of Zowe v2, you can skip this security configuration

step unless told otherwise in the release documentation.

4. Perform APF authorization of load libraries. These load libraries contain the modules required to perform z/OS priviledged
security calls.
(Uses the command zwe init apfauth)

5. Configure Zowe to use TLS certificates

(Uses the command zwe init certificate)

6. Create the VSAM data sets used by the Zowe APl Mediation Layer caching service. Note that this step is only required if you are
configuring Zowe for cross LPAR sysplex high availability.

(Uses the command zwe init vsam)

7. Install Zowe main started tasks.

(Uses command zwe init stc)

Once you complete the Zowe z/OS runtime, you can verify the installation to determine that Zowe is installed correctly on z/OS.

Q e
e For testing purposes, it is not necessary to set up certificates when configuring the APl Mediation Layer. You can configure
Zowe without certificate setup and run Zowe with verifyCertificates: DISABLED.

e For pro